自然语言处理(NLP)编程实践-1.1 使用逻辑回归实现情感分类
作者:互联网
内容汇总:https://blog.csdn.net/weixin_43093481/article/details/114989382?spm=1001.2014.3001.5501
代码:https://github.com/Ogmx/Natural-Language-Processing-Specialization
——————————————————————————————————————————
作业 1: 逻辑回归(Logistic Regression)
学习目标:
学习逻辑回归,你将会学习使用逻辑回归对推特进行情感分析。给出一个推特,你要判断其是正向情感还是负向情感。
具体而言,将会学习:
- 给出一段文本,学习如何提取特征用于逻辑回归
- 从零开始实现逻辑回归
- 应用逻辑回归进行NLP任务
- 测试逻辑回归算法
- 进行错误分析
我们将使用一系列推特数据。在最后你的模型应该能得到99%的准确率。
导入函数和数据
# run this cell to import nltk
import nltk
from os import getcwd
导入函数
从该地址下载本实验需要的数据documentation for the twitter_samples dataset.
- twitter_samples: 执行以下命令来下载数据
nltk.download('twitter_samples')
- stopwords: 执行以下命令来下载停用词词典:
nltk.download('stopwords')
从 utils.py 导入帮助函数:
process_tweet()
: 清理文本、拆分单词、去停用词、词根化build_freqs()
: 用于统计语料库中各单词被标记为"1"或"0"次数(即正向和负向情感)。然后构建"freqs"词典,其中键为(word,label) tuple,值为出现次数
# add folder, tmp2, from our local workspace containing pre-downloaded corpora files to nltk's data path
# this enables importing of these files without downloading it again when we refresh our workspace
filePath = f"{getcwd()}/../tmp2/"
nltk.data.path.append(filePath)
import numpy as np
import pandas as pd
from nltk.corpus import twitter_samples
from utils import process_tweet, build_freqs
准备数据
twitter_samples
中包含5000条正向推特数据集,5000条负向推特数据集,整体10,000条推特数据集- 如果直接使用3个数据集,将会包含重复推特
- 因此只使用正向数据集和负向数据集
# select the set of positive and negative tweets
all_positive_tweets = twitter_samples.strings('positive_tweets.json')
all_negative_tweets = twitter_samples.strings('negative_tweets.json')
- 数据划分: 20% 作为测试集, 80% 作为训练集
# split the data into two pieces, one for training and one for testing (validation set)
test_pos = all_positive_tweets[4000:]
train_pos = all_positive_tweets[:4000]
test_neg = all_negative_tweets[4000:]
train_neg = all_negative_tweets[:4000]
train_x = train_pos + train_neg
test_x = test_pos + test_neg
- 对正向标签和负向标签建立numpy数组
# combine positive and negative labels
train_y = np.append(np.ones((len(train_pos), 1)), np.zeros((len(train_neg), 1)), axis=0)
test_y = np.append(np.ones((len(test_pos), 1)), np.zeros((len(test_neg), 1)), axis=0)
# Print the shape train and test sets
print("train_y.shape = " + str(train_y.shape))
print("test_y.shape = " + str(test_y.shape))
train_y.shape = (8000, 1)
test_y.shape = (2000, 1)
- 使用
build_freqs()
函数构建频率词典.- 强烈建议在
utils.py
中阅读build_freqs()
函数代码来理解其原理
- 强烈建议在
for y,tweet in zip(ys, tweets):
for word in process_tweet(tweet):
pair = (word, y)
if pair in freqs:
freqs[pair] += 1
else:
freqs[pair] = 1
# create frequency dictionary
freqs = build_freqs(train_x, train_y)
# check the output
print("type(freqs) = " + str(type(freqs)))
print("len(freqs) = " + str(len(freqs.keys())))
type(freqs) = <class ‘dict’>
len(freqs) = 11346
处理推特
使用 process_tweet()
函数对推特中的每个单词进行向量化,去停用词和词根化
# test the function below
print('This is an example of a positive tweet: \n', train_x[0])
print('\nThis is an example of the processed version of the tweet: \n', process_tweet(train_x[0]))
This is an example of a positive tweet:
#FollowFriday @France_Inte @PKuchly57 @Milipol_Paris for being top engaged members in my community this week标签:NLP,1.1,tweet,print,freqs,np,test,theta,自然语言 来源: https://blog.csdn.net/weixin_43093481/article/details/116356879