编程语言
首页 > 编程语言> > 凸包算法详解

凸包算法详解

作者:互联网

Graham扫描法

时间复杂度:O(n㏒n) 
思路:Graham扫描的思想是先找到凸包上的一个点,然后从那个点开始按逆时针方向逐个找凸包上的点,实际上就是进行极角排序,然后对其查询使用。 
这里写图片描述 
步骤:

  1. 把所有点放在二维坐标系中,则纵坐标最小的点一定是凸包上的点,如图中的P0。
  2. 把所有点的坐标平移一下,使 P0 作为原点,如上图。
  3. 计算各个点相对于 P0 的幅角 α ,按从小到大的顺序对各个点排序。当 α 相同时,距离 P0 比较近的排在前面。例如上图得到的结果为 P1,P2,P3,P4,P5,P6,P7,P8。我们由几何知识可以知道,结果中第一个点 P1 和最后一个点 P8 一定是凸包上的点。 
    (以上是准备步骤,以下开始求凸包) 
    以上,我们已经知道了凸包上的第一个点 P0 和第二个点 P1,我们把它们放在栈里面。现在从步骤3求得的那个结果里,把 P1 后面的那个点拿出来做当前点,即 P2 。接下来开始找第三个点:
  4. 连接P0和栈顶的那个点,得到直线 L 。看当前点是在直线 L 的右边还是左边。如果在直线的右边就执行步骤5;如果在直线上,或者在直线的左边就执行步骤6。
  5. 如果在右边,则栈顶的那个元素不是凸包上的点,把栈顶元素出栈。执行步骤4。
  6. 当前点是凸包上的点,把它压入栈,执行步骤7。
  7. 检查当前的点 P2 是不是步骤3那个结果的最后一个元素。是最后一个元素的话就结束。如果不是的话就把 P2 后面那个点做当前点,返回步骤4。

  最后,栈中的元素就是凸包上的点了。 
  以下为用Graham扫描法动态求解的过程: 
这里写图片描述

  下面静态求解过程

标签:P2,P0,P1,包上,步骤,凸包,算法,详解
来源: https://www.cnblogs.com/csx-zzh/p/14403572.html