用python实现小说的平均句长,词性占比,关键词,标点符号,词形统计
作者:互联网
用python实现小说的平均句长,词性占比,关键词,标点符号,词形统计
需求如下
代码:
词性占比
import jieba
from wordcloud import WordCloud
import re
from PIL import Image
import matplotlib.pyplot as plt
def read_file_gbk(filename):
with open(filename,'r',encoding='GBK') as f:
s = f.read()
s = re.sub('/C', '', s)
s = re.sub('\r|\n|\s','',s)
return s
import jieba
import numpy as np
#打开词典文件,返回列表
def open_dict(Dict = 'hahah', path=r''):
path = path + '%s.txt' % Dict
dictionary = open(path, 'r', encoding='utf-8')
dict = []
for word in dictionary:
word = word.strip(' ,\n')
dict.append(word)
return dict
def judgeodd(num):
if (num % 2) == 0:
return 'even'
else:
return 'odd'
#注意,这里你要修改path路径。
deny_word = open_dict(Dict = '否定词', path= r'')
posdict = open_dict(Dict = 'positive', path= r'')
negdict = open_dict(Dict = 'negative', path= r'')
degree_word = open_dict(Dict = '程度级别词语', path= r'')
mostdict = degree_word[degree_word.index('extreme')+1 : degree_word.index('very')]#权重4,即在情感词前乘以4
verydict = degree_word[degree_word.index('very')+1 : degree_word.index('more')]#权重3
moredict = degree_word[degree_word.index('more')+1 : degree_word.index('ish')]#权重2
ishdict = degree_word[degree_word.index('ish')+1 : degree_word.index('last')]#权重0.5
def sentiment_score_list(dataset):
seg_sentence = dataset.split('。|!|?')
count1 = []
count2 = []
for sen in seg_sentence: #循环遍历每一个评论
segtmp = jieba.lcut(sen, cut_all=False,HMM=False) #把句子进行分词,以列表的形式返回
i = 0 #记录扫描到的词的位置
a = 0 #记录情感词的位置
poscount = 0 #积极词的第一次分值
poscount2 = 0 #积极词反转后的分值
poscount3 = 0 #积极词的最后分值(包括叹号的分值)
negcount = 0
negcount2 = 0
negcount3 = 0
for word in segtmp:
poscount = 0
neg_count = 0
poscount2 = 0
neg_count2 = 0
poscount3 = 0
neg_count3 = 0
if word in posdict: # 判断词语是否是情感词
poscount += 1
c = 0
for w in segtmp[a:i]: # 扫描情感词前的程度词
if w in mostdict:
poscount *= 4.0
elif w in verydict:
poscount *= 3.0
elif w in moredict:
poscount *= 2.0
elif w in ishdict:
poscount *= 0.5
elif w in deny_word:
c += 1
if judgeodd(c) == 'odd': # 扫描情感词前的否定词数,如果为奇数:
poscount *= -1.0
poscount2 += poscount
poscount = 0
poscount3 = poscount + poscount2 + poscount3
poscount2 = 0
else: # 扫描情感词前的否定词数,如果为偶数:
poscount3 = poscount + poscount2 + poscount3
poscount = 0
a = i + 1 # 情感词的位置变化
elif word in negdict: # 消极情感的分析,与上面一致
negcount += 1
d = 0
for w in segtmp[a:i]:
if w in mostdict:
negcount *= 4.0
elif w in verydict:
negcount *= 3.0
elif w in moredict:
negcount *= 2.0
elif w in ishdict:
negcount *= 0.5
elif w in deny_word:
d += 1
if judgeodd(d) == 'odd':
negcount *= -1.0
negcount2 += negcount
negcount = 0
negcount3 = negcount + negcount2 + negcount3
negcount2 = 0
else:
negcount3 = negcount + negcount2 + negcount3
negcount = 0
a = i + 1
elif word == '!' or word == '!': ##判断句子是否有感叹号
for w2 in segtmp[::-1]: # 扫描感叹号前的情感词,发现后权值+2,然后退出循环
if w2 in posdict or negdict:
poscount3 += 2
negcount3 += 2
break
i += 1 # 扫描词位置前移
# 以下是防止出现负数的情况
pos_count = 0
neg_count = 0
if poscount3 < 0 and negcount3 > 0:
neg_count += negcount3 - poscount3
pos_count = 0
elif negcount3 < 0 and poscount3 > 0:
pos_count = poscount3 - negcount3
neg_count = 0
elif poscount3 < 0 and negcount3 < 0:
neg_count = -poscount3
pos_count = -negcount3
else:
pos_count = poscount3
neg_count = negcount3
count1.append([pos_count, neg_count])
count2.append(count1)
count1 = []
return count2
def sentiment_score(senti_score_list):
score = []
for review in senti_score_list:
score_array = np.array(review)
Pos = np.sum(score_array[:, 0])
Neg = np.sum(score_array[:, 1])
AvgPos = np.mean(score_array[:, 0])
AvgPos = float('%.1f'%AvgPos)
AvgNeg = np.mean(score_array[:, 1])
AvgNeg = float('%.1f'%AvgNeg)
StdPos = np.std(score_array[:, 0])
StdPos = float('%.1f'%StdPos)
StdNeg = np.std(score_array[:, 1])
StdNeg = float('%.1f'%StdNeg)
score.append([Pos, Neg, AvgPos, AvgNeg, StdPos, StdNeg])
return score
def sentiment_sen(data):
x = sentiment_score(sentiment_score_list(data))[0][4]
y = sentiment_score(sentiment_score_list(data))[0][5]
return x-y
#情感分析
def calculate_motion(text):
print("emotion analyse start")
pos=0
neg=0
neutral=0
s = read_file_gbk(text)
sentences = re.split(r' *[\.\。][\'"\)\]]* *', s)
sen_list=[]
for stuff in sentences:
sen_list.append(stuff)
print(sen_list.__sizeof__())
for x in sen_list:
if len(x)>0:
if sentiment_sen(x)>0:
pos=pos+1
elif sentiment_sen(x)==0:
neutral=neutral+1
elif sentiment_sen(x)<0:
neg=neg+1
print("positive negative and neutral sentence size is为:{}、{}、{}".format(pos,neg,neutral))
x_data = ["positive", "negative", "neutral"]
y_data = [pos,neg,neutral]
bar_width = 0.3
plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号
# 将X轴数据改为使用range(len(x_data), 就是0、1、2...
plt.bar(x=x_data, height=y_data, label='',
color='steelblue', alpha=0.8, width=bar_width)
# 将X轴数据改为使用np.arange(len(x_data))+bar_width,
# 就是bar_width、1+bar_width、2+bar_width...这样就和第一个柱状图并列了
# 在柱状图上显示具体数值, ha参数控制水平对齐方式, va控制垂直对齐方式
for x, y in enumerate(y_data):
plt.text(x, y + 100, '%s' % y, ha='center', va='bottom')
# 设置标题
plt.title("情感计算")
# 为两条坐标轴设置名称
plt.xlabel("类型")
plt.ylabel("数量")
# 显示图例
plt.legend()
plt.show()
calculate_motion('XX.txt')
calculate_motion('YQ.txt')
效果图
平均句长
import jieba
from wordcloud import WordCloud
import re
from PIL import Image
import matplotlib.pyplot as plt
def read_file_gbk(filename):
with open(filename,'r',encoding='GBK') as f:
s = f.read()
s = re.sub('/C', '', s)
s = re.sub('\r|\n|\s','',s)
return s
import jieba
import numpy as np
#统计平均句长
def calculate_avg_length(text):
size = 0
num = 0
s = read_file_gbk(text)
sentences = re.split(r' *[\.\?!。 ,][\'"\)\]]* *', s)
for stuff in sentences:
size = size+stuff.__sizeof__()
num = num +1
print("avg_length_num is "+str(size/num))
# 构建数据
x_data = ["句子总数","总句数","平均句长"]
y_data = [size,num,size/num]
bar_width = 0.3
plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号
# 将X轴数据改为使用range(len(x_data), 就是0、1、2...
plt.bar(x=x_data, height=y_data, label='',
color='steelblue', alpha=0.8, width=bar_width)
# 将X轴数据改为使用np.arange(len(x_data))+bar_width,
# 就是bar_width、1+bar_width、2+bar_width...这样就和第一个柱状图并列了
# 在柱状图上显示具体数值, ha参数控制水平对齐方式, va控制垂直对齐方式
for x, y in enumerate(y_data):
plt.text(x, y + 100, '%s' % y, ha='center', va='bottom')
# 设置标题
plt.title("平局句长计算")
# 为两条坐标轴设置名称
plt.xlabel("类型")
plt.ylabel("数量")
# 显示图例
plt.legend()
plt.show()
#计算休闲小说平均句长
calculate_avg_length('XX.txt')
#计算言情小说平均句长
calculate_avg_length('YQ.txt')
效果图
关键词词云
import jieba
from wordcloud import WordCloud
import re
import numpy as np
from PIL import Image
import matplotlib.pyplot as plt
#生成词云函数
def generate_wordcloud(text):
list = []
text = open(text, 'r', encoding='GBK').read()
with open('stopword.txt', 'r', encoding='utf-8') as f:
for line in f:
list.append(line.strip('\n'))
# print(list)
cut_text = jieba.cut(text)
# print(type(cut_text))
# print(next(cut_text))
# print(next(cut_text))
# 3.以空格拼接起来
result = " ".join(cut_text)
image=np.array(Image.open('star.jpg'))
stopwords = set(list)
# print(result)
# 4.生成词云
wc = WordCloud(
font_path='simhei.ttf', # 字体路劲
background_color='white', # 背景颜色
width=1000,
height=600,
max_font_size=100, # 字体大小
min_font_size=20,
# mask=plt.imread('xin.jpg'), #背景图片
max_words=20,
font_step=2,
stopwords=stopwords, # 设置停用词
mask= image
)
wc.generate(result)
wc.to_file('result.png') # 图片保存
# 5.显示图片
plt.figure('result') # 图片显示的名字
plt.imshow(wc)
plt.axis('off') # 关闭坐标
plt.show()
#生成修仙小说词云
generate_wordcloud('XX.txt')
#生成言情小说词云
generate_wordcloud('YQ.txt')
效果图
标点符号
import jieba
from wordcloud import WordCloud
import re
from PIL import Image
import matplotlib.pyplot as plt
def read_file_gbk(filename):
with open(filename,'r',encoding='GBK') as f:
s = f.read()
s = re.sub('/C', '', s)
s = re.sub('\r|\n|\s','',s)
return s
def calculate_sign(text):
s = read_file_gbk(text)
s1 =re.findall('。(.*?)!', s)
print('! num is '+str(s1.__sizeof__()))
s2=re.findall('。(.*?)?', s)
print('? num is ' +str(s2.__sizeof__()))
x_data = ["感叹号数量", "逗号数量"]
y_data = [s1.__sizeof__(),s2.__sizeof__()]
bar_width = 0.3
plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号
# 将X轴数据改为使用range(len(x_data), 就是0、1、2...
plt.bar(x=x_data, height=y_data, label='',
color='steelblue', alpha=0.8, width=bar_width)
# 将X轴数据改为使用np.arange(len(x_data))+bar_width,
# 就是bar_width、1+bar_width、2+bar_width...这样就和第一个柱状图并列了
# 在柱状图上显示具体数值, ha参数控制水平对齐方式, va控制垂直对齐方式
for x, y in enumerate(y_data):
plt.text(x, y + 100, '%s' % y, ha='center', va='bottom')
# 设置标题
plt.title("标点符号计算")
# 为两条坐标轴设置名称
plt.xlabel("类型")
plt.ylabel("数量")
# 显示图例
plt.legend()
plt.show()
calculate_sign('XX.txt')
calculate_sign('YQ.txt')
效果图
词形
import jieba
from wordcloud import WordCloud
import re
from PIL import Image
import matplotlib.pyplot as plt
def read_file_gbk(filename):
with open(filename,'r',encoding='GBK') as f:
s = f.read()
s = re.sub('/C', '', s)
s = re.sub('\r|\n|\s','',s)
return s
import jieba
import numpy as np
#统计形状
def calculate_shape(text):
print("start calculate_shape")
# 读取文本,输出为长串字符
s = read_file_gbk(text)
# 通过标点符合进行切分,同时去掉特殊字符
sentences = re.split(r' *[\.\?!,。…… —— oo ll 99][\'"\)\]]* *', s)
SIZE_AA = 0;
SIZE_AABB = 0;
SIZE_ABB = 0;
SIZE_ABAB = 0;
for stuff in sentences:
# print(stuff)
# 原理解析
# "(.)\1(.)\2"这个正则,
# .表示除换行外任意字符
# \1 表示第一个括号里面的字符重复,默认重复一次,想重复4次加{4} 即(.)\1{4}
# \2 表示第二个括号里面的字符重复
# 开始匹配AA
strings = re.finditer(r'(.)\1', stuff)
# print(type(strings))
for i in strings:
SIZE_AA = SIZE_AA + 1
strings = re.finditer(r'(.)\1(.)\2', stuff)
for i in strings:
SIZE_AABB = SIZE_AABB + 1
strings = re.finditer(r'(.)\1(.)\2', stuff)
for i in strings:
SIZE_ABB = SIZE_ABB + 1
strings = re.finditer(r'(..)\1', stuff)
for i in strings:
SIZE_ABAB = SIZE_ABAB + 1
print("AA shape num is " + str(SIZE_AA))
print("AABB shape num is " + str(+SIZE_AABB) )
print("ABB shape num is " + str(SIZE_ABB) )
print("ABAB shape num is " + str(SIZE_ABAB) )
# start draw
# 构建数据
x_data = ['AA', 'AABB', 'ABB', 'ABAB']
y_data = [SIZE_AA, SIZE_AABB, SIZE_ABB, SIZE_ABAB]
bar_width = 0.3
plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号
# 将X轴数据改为使用range(len(x_data), 就是0、1、2...
plt.bar(x=x_data, height=y_data, label='',
color='steelblue', alpha=0.8, width=bar_width)
# 将X轴数据改为使用np.arange(len(x_data))+bar_width,
# 就是bar_width、1+bar_width、2+bar_width...这样就和第一个柱状图并列了
# 在柱状图上显示具体数值, ha参数控制水平对齐方式, va控制垂直对齐方式
for x, y in enumerate(y_data):
plt.text(x, y + 100, '%s' % y, ha='center', va='bottom')
# 设置标题
plt.title("词形分析")
# 为两条坐标轴设置名称
plt.xlabel("类型")
plt.ylabel("数量")
# 显示图例
plt.legend()
plt.show()
print("end calculate_shape")
#生成修仙小说词形
calculate_shape('XX.txt')
#生成言情小说词形
calculate_shape('YQ.txt')
效果图
标签:词性,plt,word,词形,python,re,import,data,width 来源: https://blog.csdn.net/qq_42338771/article/details/113060547