C++用户的Cplex使用指南(四)——Cutting stock problem与Column Generation
作者:互联网
1 Cutting stock problem
1.1 模型改进
符号定义:
x
j
x_j
xj:第
j
j
j种切法使用的次数(即按这种切法切割的钢卷的数量);
a
i
j
a_{ij}
aij:在第
j
j
j种切法中切割出长度为
w
i
w_i
wi的钢卷的数目。
例如,标准钢卷长度为
W
=
100
W=100
W=100,需要的钢卷长度
w
i
=
25
,
35
,
45
w_i=25,35,45
wi=25,35,45,每种长度钢卷的需求量
n
i
=
100
,
200
,
300
,
(
i
=
1
,
…
,
3
)
n_i=100,200,300,(i=1,\dots,3)
ni=100,200,300,(i=1,…,3)。
则可以有以下几种切法:
切法1:将1个标准长度的钢卷切成4个
w
1
=
25
w_1=25
w1=25的,则
a
11
=
4
,
a
21
=
0
,
a
31
=
0
a_{11}=4,a_{21}=0,a_{31}=0
a11=4,a21=0,a31=0;
切法2:将1个标准长度的钢卷切成1个
w
1
=
25
w_1=25
w1=25的和2个
w
2
=
35
w_2=35
w2=35的,则
a
12
=
1
,
a
22
=
2
,
a
32
=
0
a_{12}=1,a_{22}=2,a_{32}=0
a12=1,a22=2,a32=0;
切法3:将1个标准长度的钢卷切成2个
w
3
=
45
w_3=45
w3=45的,则
a
13
=
0
,
a
23
=
0
,
a
33
=
2
a_{13}=0,a_{23}=0,a_{33}=2
a13=0,a23=0,a33=2。
……
则数学模型( P 2 P_2 P2)如下:
min ∑ j = 1 n x j s.t. ∑ j = 1 n a i j x j ≥ n i , i = 1 , … , m (需求数量约束) x j ∈ Z + , j = 1 , … , n \min\quad \sum^n_{j=1}x_j\\ \text{s.t.}\quad \sum_{j=1}^na_{ij}x_j\ge n_i,i=1,\dots,m\quad\text{(需求数量约束)}\\ x_j\in\mathbb{Z}_+,j=1,\dots,n minj=1∑nxjs.t.j=1∑naijxj≥ni,i=1,…,m(需求数量约束)xj∈Z+,j=1,…,n
其中 n n n为所有切法的数目,同时满足 ∑ i = 1 m w i a i j ≤ W \sum^m_{i=1}w_ia_{ij}\le W ∑i=1mwiaij≤W。
A = [ a 11 a 12 a 13 ⋯ a 21 a 22 a 23 ⋯ ⋮ ⋮ ⋮ ⋮ a m 1 a m 2 a m 3 ⋯ ] A= \begin{bmatrix} a_{11}&a_{12}&a_{13}&\cdots\\ a_{21}&a_{22}&a_{23}&\cdots\\ \vdots&\vdots&\vdots&\vdots\\ a_{m1}&a_{m2}&a_{m3}&\cdots\\ \end{bmatrix} A=⎣⎢⎢⎢⎡a11a21⋮am1a12a22⋮am2a13a23⋮am3⋯⋯⋮⋯⎦⎥⎥⎥⎤
A中的每一列代表一种切法。
1.2 切法数量的估计
C m k ˉ = m ! k ˉ ! ( m − k ˉ ) ! C^{\bar{k}}_m=\frac{m!}{\bar{k}!(m-\bar{k})!} Cmkˉ=kˉ!(m−kˉ)!m!
其中, k ˉ \bar{k} kˉ表示每种切法中切割出不同长度钢卷数目的平均值,可以看出当 m m m增大时,切法的数目会呈指数级增大。
虽然依然能用单纯形法求解上述模型 P 1 , P 2 P_1,P_2 P1,P2。先不谈单纯形法求解该模型的效率,仅从需要枚举所有的切割方案 x j x_j xj这一操作,就能知道上述求解方法一定不是最优的。而且上述枚举法存在以下缺点:
-
当原材料长度增加时,切割方案呈指数式增长,我们无法枚举所有的 x j x_j xj;
-
枚举出来的切割方案可能会剩余过多的木料,这种方案通常不会被选择。
单纯形法要求我们列出所有的变量( x j x_j xj)。回忆一下,单纯形法在每次迭代的过程中,只能用一个非基变量替换一个基变量,而最终的基变量个数仅与约束条件的数量有关。这么看来,有大部分的 x j x_j xj是不会被用到的(也就是说这些方案都不够好)。因此,我们不需要,也没必要列出所有的 x j x_j xj;再者,对于大规模的问题,我们无法列出满足条件的所有变量。基于此,有学者就提出了求解大规模线性规划的高效算法 —— 列生成法,主要适用于**变量数目(列)大于约束条件个数(行)**的线性规划问题。
2 Column Generation
2.1 列生成基本思想
列生成算法的主要思想是对那些无法列出所有变量的原问题(master problem,MP),先考虑有限变量的主问题(restricted master problem ,RMP),其余变量在有需要的时候,再添加到RMP中。什么变量是需要被加入到RMP中的呢?在单纯形法中,我们根据非基变量检验数的正负来选择进基变量;在列生成中,通过子问题(subproblem)来寻找满足reduced cost条件的变量,如果找到的话,就将它加入到RMP中,直至找不到为止,那么MP就求得了最优解。
2.2 引例
2.2.1 Model
Master Problem
x j x_j xj:将要使用模式 j j j的次数;
A
i
j
A_{ij}
Aij:满足需求
d
i
d_i
di所需的每个模式
j
j
j的项数
i
i
i。
min
∑
j
x
j
s.t.
∑
i
,
j
A
i
j
x
j
≥
d
i
∀
i
∈
I
x
j
≥
0
∀
j
∈
J
\min \sum_j x_j\\ \text{s.t.}\quad \sum_{i,j}A_{ij}x_j\ge d_i\quad\forall i\in I\\ x_j\ge0\quad\forall j\in J
minj∑xjs.t.i,j∑Aijxj≥di∀i∈Ixj≥0∀j∈J
Subproblem
π \pi π:master problem当前解的对偶变量向量, π i \pi_i πi即master problem的对偶变量;
W W W:卷材宽度, W i W_i Wi是从卷材上切下的模式中可使用的带材 i i i的宽度;
A
i
A_i
Ai:该subproblem的建模变量,即在此subproblem中尺寸
i
i
i的切割次数。
min
1
−
∑
i
π
i
A
i
s.t.
∑
i
W
i
A
i
≤
W
A
i
≥
0
∀
i
∈
I
\min\quad 1-\sum_i\pi_iA_i\\ \text{s.t.}\quad \sum_iW_iA_i\le W\\ A_i\ge0\quad\forall i\in I
min1−i∑πiAis.t.i∑WiAi≤WAi≥0∀i∈I
Subproblem的目标函数是新列的Reduced Cost。
2.2.2 Codes
/*cplex header file*/
#include <ilcplex/ilocplex.h>
/*using name space for cplex program*/
ILOSTLBEGIN
#define RC_EPS 1.0e-6
static void readData(const char* filename, IloNum& rollWidth, IloNumArray& size, IloNumArray& amount){
ifstream in(filename);
if(in){
in >> rollWidth;//input the standard width of the steel roll
in >> size;//input the size demand of cilents
in >> amount;//input the amount demand of cilents
}
else{//in case file dose not exist
cerr << "No such file: " << filename << endl;
throw(1);
}
}
/*report for the master problem*/
static void report1(IloCplex& cutSolver, IloNumVarArray Cut, IloRangeArray Fill){
cout << endl;
cout << "Using " << cutSolver.getObjective() << " rolls" << endl;//output the total number of used rolls
cout << endl;
/*output the number of each pattern, aka x_j*/
for (IloInt j = 0; j < Cut.getSize();j++){
cout << " Cut" << j << " = " << cutSolver.getValue(Cut[j]) << endl;
}
cout << endl;
/*output the shadow price of each pattern*/
for (IloInt i = 0;i<Fill.getSize();i++){
cout << " Fill" << i << " = " << cutSolver.getDual(Fill[i]) << endl;
}
cout << endl;
}
/*report for the subproblems*/
static void report2(IloAlgorithm& patSolver, IloNumVarArray Use, IloObjective obj){
cout << endl;
cout << "Reduced cost is " << patSolver.getValue(obj) << endl;//output the reduced cost of the pattern
cout << endl;
/*output the cofficients of each size (aka A_i) in the pattern*/
if(patSolver.getValue(obj)<=-RC_EPS){
for (IloInt i = 0; i < Use.getSize(); i++) {
cout << " Use " << i << " = " << patSolver.getValue(Use[i]) << endl;
}
cout << endl;
}
}
/*report for the final master problem*/
static void report3(IloCplex& cutSolver, IloNumVarArray Cut){
cout << endl;
cout << "Best integer solution uses " << cutSolver.getObjValue() << " rolls" << endl;//output the final total number of used rolls
cout << endl;
/*output the number of each pattern, aka x_j*/
for (IloInt j = 0; j < Cut.getSize();j++){
cout << " Cut" << j << " = " << cutSolver.getValue(Cut[j]) << endl;
}
}
/*main program*/
int main(){
IloEnv env;//declare the cplex environment
/*try to establish the model and slove it*/
try{
IloInt i, j;
IloNum rollWidth;//the standard width of steel roll (there is no need to add "(env)" for IloNum/IloInt)
IloNumArray amount(env);//the wanted amount of cilents
IloNumArray size(env);
readData("cutstock.dat", rollWidth, size, amount);//input the data of the problem instance
//system("pause");
/*cutting-optimization problem, aka master problem*/
IloModel cutOpt(env);//declare the model for the master problem
IloObjective RollsUsed = IloAdd(cutOpt, IloMinimize(env));//add objective to model cutOpt
IloRangeArray Fill = IloAdd(cutOpt, IloRangeArray(env, amount, IloInfinity));//add constraints to model cutOpt, amount is the lower bound and Ilofinity is the upper bound
IloNumVarArray Cut(env); //declare decision variables for the master problem, aka x_j; Note that the variables are initialized with numVar
IloInt nWdth = size.getSize();//the number of different size
for (j = 0; j < nWdth;j++){
/*
add the coefficients of variables by column;
"RollsUsed(1)"" means the coefficient of the varibale is 1;
"Fill[j](int(rollWidth / size[j]))" means the coefficient of the variable in the j-th constraint is int(rollWidth / size[j]);
this program cuts a standard roll with single size as initial solution.
*/
Cut.add(IloNumVar(RollsUsed(1) + Fill[j](int(rollWidth / size[j]))));
}
IloCplex cutSolver(cutOpt);//declare the solver for the master problem
/*pattern-generation problem, aka subproblem*/
IloModel patGen(env);//declare the model for subproblems
IloObjective ReducedCost = IloAdd(patGen, IloMinimize(env, 1));//"IloMinimize(env, 1)" means the objective function initialize with a constant 1, 1 is the coefficient of the variable in the objective function
IloNumVarArray Use(env, nWdth, 0.0, IloInfinity, ILOINT);//declare integer decision variables for the subproblems, aka A_i
patGen.add(IloScalProd(size, Use) <= rollWidth);//(product) add constraints
IloCplex patSolver(patGen);//declare the solver for subproblems
/*column-generation procedure*/
IloNumArray price(env, nWdth);//declare container for the shadow price, aka the cofficients of objective function for subproblems
IloNumArray newPatt(env, nWdth);//declare the container for new column
for (;;){
/*optimize the current pattern, aka solve the current master problem*/
cutSolver.solve();//solve the master proble
cutSolver.exportModel("MP.lp");//export the model as lp file
report1(cutSolver, Cut, Fill);
/*find and add a new pattern*/
for (i = 0; i < nWdth;i++){
price[i] = -cutSolver.getDual(Fill[i]);
}
ReducedCost.setLinearCoefs(Use, price);//set the linear coefficients of objective function for subproblems
patSolver.solve();//solve the subproblem
patSolver.exportModel("SP.lp");
report2(patSolver, Use, ReducedCost);
/*if the redeced cost of the pattern is postive, stop searching for columns*/
if(patSolver.getValue(ReducedCost)>-RC_EPS){
break;
}
patSolver.getValues(newPatt, Use);//copy the values of "Use" to "newPatt", aka let newPattern be the new column
Cut.add(IloNumVar(RollsUsed(1) + Fill(newPatt)));//add new column to the master problem
system("pause");//pause to check out the lp files
}
cutOpt.add(IloConversion(env, Cut, ILOINT));//transfer numVar "Cut" into intVar
cutSolver.solve();//solve the last master problem
cout << "Solution status: " << cutSolver.getStatus() << endl;//output the solving status
report3(cutSolver, Cut);
}
catch(IloException& ex){
cerr << "Error: " << ex << endl;
}
catch(...){
cerr << "Error" << endl;
}
env.end();
return 0;
}
2.2.2.1 Analysis
代码来源于IBM CPLEX安装文件夹中的cutstock.cpp
示例文件,根据自己的代码习惯和理解做了修改添加了注释。
该问题中,卷材只有一种标准长度,客户需求的长度可以有多种,数量不定。
2.2.2.2 Structure
Meaning | code |
---|---|
卷材标准长度 | rollWidth |
需求数量 | amount |
需求尺寸 | size |
Master Problem | Subproblem | |||
---|---|---|---|---|
元素 | code | 类型 | code | 类型 |
模型 | cutOpt | IloModel | patGen | IloModel |
目标函数 | RollsUsed | IloObjective | ReducedCost | IloObjective |
约束 | Fill | IloRangeArray | 直接添加 | |
变量 | Cut | IloNumVarArray IloIntVarArray | Use | IloNumVarArray |
求解算法 | cutSolver | IloCplex | patSolver | IloCplex |
2.2.3 Problem Instance
rollWidth=115, size=[25, 40, 50, 55, 70], amount=[50, 36, 24, 8, 30].
Iteration 1
MP1
min
x
1
+
x
2
+
x
3
+
x
4
+
x
5
s.t.
4
x
1
>
=
50
2
x
2
>
=
36
2
x
3
>
=
24
2
x
4
>
=
8
x
5
>
=
30
x
i
≥
0
i
=
{
1
,
…
,
5
}
\min\quad x_1 + x_2 + x_3 + x_4 + x_5\\ \text{s.t.}\quad 4 x_1 >= 50\\ 2 x_2 >= 36\\ 2 x_3 >= 24\\ 2 x_4 >= 8\\ x_5 >= 30\\ x_i{\color{red}\ge0}\quad i=\{1,\dots,5\}
minx1+x2+x3+x4+x5s.t.4x1>=502x2>=362x3>=242x4>=8x5>=30xi≥0i={1,…,5}
Cut: [12.5, 18, 12, 4, 30]
dual(Fill): [0.25, 0.5, 0.5, 0.5, 1]
SP1
min
−
0.25
x
1
−
0.5
x
2
−
0.5
x
3
−
0.5
x
4
−
x
5
+
1
s.t.
25
x
1
+
40
x
2
+
50
x
3
+
55
x
4
+
70
x
5
<
=
115
x
i
≥
0
i
=
{
1
,
…
,
5
}
\min\quad - 0.25 x_1 - 0.5 x_2 - 0.5 x_3 - 0.5 x_4 - x_5 + 1\\ \text{s.t.}\quad 25 x_1 + 40 x_2 + 50 x_3 + 55 x_4 + 70 x_5 <= 115\\ x_i\ge0 \quad i=\{1,\dots,5\}
min−0.25x1−0.5x2−0.5x3−0.5x4−x5+1s.t.25x1+40x2+50x3+55x4+70x5<=115xi≥0i={1,…,5}
Reduced cost = -0.5
Use: [0, 1, 0, 0, 1]
Iteration 2
MP2
min
x
1
+
x
2
+
x
3
+
x
4
+
x
5
+
x
6
s.t.
4
x
1
>
=
50
2
x
2
+
x
6
>
=
36
2
x
3
>
=
24
2
x
4
>
=
8
x
5
+
x
6
>
=
30
x
i
≥
0
i
=
{
1
,
…
,
6
}
\min\quad x_1 + x_2 + x_3 + x_4 + x_5 + x_6\\ \text{s.t.}\quad 4 x_1 >= 50\\ 2 x_2 + x_6 >= 36\\ 2 x_3 >= 24\\ 2 x_4 >= 8\\ x_5 + x_6 >= 30\\ x_i\ge0\quad i=\{1,\dots,6\}
minx1+x2+x3+x4+x5+x6s.t.4x1>=502x2+x6>=362x3>=242x4>=8x5+x6>=30xi≥0i={1,…,6}
Cut: [12.5, 3, 12, 4, 0, 30]
dual(Fill): [0.25, 0.5, 0.5, 0.5, 0.5]
SP2
min
−
0.25
x
1
−
0.5
x
2
−
0.5
x
3
−
0.5
x
4
−
0.5
x
5
+
1
s.t.
25
x
1
+
40
x
2
+
50
x
3
+
55
x
4
+
70
x
5
<
=
115
x
i
≥
0
i
=
{
1
,
…
,
5
}
\min\quad - 0.25 x_1 - 0.5 x_2 - 0.5 x_3 - 0.5 x_4 - 0.5 x_5 + 1\\ \text{s.t.}\quad 25 x_1 + 40 x_2 + 50 x_3 + 55 x_4 + 70 x_5 <= 115\\ x_i\ge0 \quad i=\{1,\dots,5\}
min−0.25x1−0.5x2−0.5x3−0.5x4−0.5x5+1s.t.25x1+40x2+50x3+55x4+70x5<=115xi≥0i={1,…,5}
Reduced cost = -0.25
Use: [1, 2, 0, 0, 0]
Iteration 3
MP3
min
x
1
+
x
2
+
x
3
+
x
4
+
x
5
+
x
6
+
x
7
s.t.
4
x
1
+
x
7
>
=
50
2
x
2
+
x
6
+
2
x
7
>
=
36
2
x
3
>
=
24
2
x
4
>
=
8
x
5
+
x
6
>
=
30
x
i
≥
0
i
=
{
1
,
…
,
7
}
\min\quad x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7\\ \text{s.t.}\quad 4 x_1 +x_7 >= 50\\ 2 x_2 + x_6 + 2 x_7 >= 36\\ 2 x_3 >= 24\\ 2 x_4 >= 8\\ x_5 + x_6 >= 30\\ x_i\ge0\quad i=\{1,\dots,7\}
minx1+x2+x3+x4+x5+x6+x7s.t.4x1+x7>=502x2+x6+2x7>=362x3>=242x4>=8x5+x6>=30xi≥0i={1,…,7}
Cut: [11.75, 0, 12, 4, 0, 30, 3]
dual(Fill): [0.25, 0.375, 0.5, 0.5, 0.625]
SP3
min
−
0.25
x
1
−
0.375
x
2
−
0.5
x
3
−
0.5
x
4
−
0.625
x
5
+
1
s.t.
25
x
1
+
40
x
2
+
50
x
3
+
55
x
4
+
70
x
5
<
=
115
x
i
≥
0
i
=
{
1
,
…
,
5
}
\min\quad - 0.25 x_1 - 0.375 x_2 - 0.5 x_3 - 0.5 x_4 - 0.625 x_5 + 1\\ \text{s.t.}\quad 25 x_1 + 40 x_2 + 50 x_3 + 55 x_4 + 70 x_5 <= 115\\ x_i\ge0 \quad i=\{1,\dots,5\}
min−0.25x1−0.375x2−0.5x3−0.5x4−0.625x5+1s.t.25x1+40x2+50x3+55x4+70x5<=115xi≥0i={1,…,5}
Reduced cost = -0.125
Use: [3, 1, 0, 0, 0]
Iteration 4
MP4
min
x
1
+
x
2
+
x
3
+
x
4
+
x
5
+
x
6
+
x
7
+
x
8
s.t.
4
x
1
+
x
7
+
3
x
8
>
=
50
2
x
2
+
x
6
+
2
x
7
+
x
8
>
=
36
2
x
3
>
=
24
2
x
4
>
=
8
x
5
+
x
6
>
=
30
x
i
≥
0
i
=
{
1
,
…
,
8
}
\min\quad x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7 + x_8\\ \text{s.t.}\quad 4 x_1 +x_7 + 3 x_8 >= 50\\ 2 x_2 + x_6 + 2 x_7 + x_8 >= 36\\ 2 x_3 >= 24\\ 2 x_4 >= 8\\ x_5 + x_6 >= 30\\ x_i\ge0\quad i=\{1,\dots,8\}
minx1+x2+x3+x4+x5+x6+x7+x8s.t.4x1+x7+3x8>=502x2+x6+2x7+x8>=362x3>=242x4>=8x5+x6>=30xi≥0i={1,…,8}
Cut: [8, 0, 12, 4, 0, 30, 0, 6]
2.3 Multiple standard width
2.3.1 Codes
/*cplex header file*/
#include <ilcplex/ilocplex.h>
/*using name space for cplex program*/
ILOSTLBEGIN
typedef IloArray<IloModel> IloModelArray; // model array container
typedef IloArray<IloObjective> IloObjectiveArray; // objective array container
typedef IloArray<IloCplex> IloCplexArray; // Cplex array container
typedef IloArray<IloNumVarArray> NumVarMatrix2; // 2-d float variables container
#define RC_EPS 1.0e-6
static void readData(const char* filename, IloNumArray& rollWidth, IloNumArray& rollCost, IloNumArray& size, IloNumArray& amount){
ifstream in(filename);
if(in){
in >> rollWidth;//input the standard width of the steel roll
in >> rollCost;//input the costs of rolls
in >> size;//input the size demand of cilents
in >> amount;//input the amount demand of cilents
}
else{//in case file dose not exist
cerr << "No such file: " << filename << endl;
exit(0);
}
}
/*report for the master problem*/
static void report_MP(IloCplex& costSolver, IloNumVarArray Cut, IloRangeArray Fill){
cout << endl;
cout << "The total costs of used rolls: " << costSolver.getObjective() << endl; //output the total costs of used rolls
cout << endl;
/*output the number of each pattern, aka x_j*/
for (IloInt j = 0; j < Cut.getSize();j++){
cout << " Cut" << j << " = " << costSolver.getValue(Cut[j]) << endl;
}
cout << endl;
/*output the shadow price of each pattern*/
for (IloInt i = 0;i<Fill.getSize();i++){
cout << " Fill" << i << " = " << costSolver.getDual(Fill[i]) << endl;
}
cout << endl;
}
/*report for the subproblems*/
static void report_SP(IloAlgorithm& patSolver, IloNumVarArray Use, IloObjective obj){
cout << endl;
cout << "Reduced cost is " << patSolver.getValue(obj) << endl;//output the reduced cost of the pattern
cout << endl;
/*output the cofficients of each size (aka A_i) in the pattern*/
if(patSolver.getValue(obj) >= -RC_EPS){
for (IloInt i = 0; i < Use.getSize(); i++) {
cout << " Use " << i << " = " << patSolver.getValue(Use[i]) << endl;
}
cout << endl;
}
}
/*report for the final master problem*/
static void report_FP(IloCplex& cutSolver, IloNumVarArray Cut){
cout << endl;
cout << "Best integer solution costs: " << cutSolver.getObjValue() << endl;//output the final total number of used rolls
cout << endl;
/*output the number of each pattern, aka x_j*/
for (IloInt j = 0; j < Cut.getSize();j++){
cout << " Cut" << j << " = " << cutSolver.getValue(Cut[j]) << endl;
}
}
/*main program*/
int main(){
/*---------------------------------Timer Starter---------------------------------*/
clock_t startTime, endTime;
startTime = clock();
IloEnv env;//declare the cplex environment
/*try to establish the model and slove it*/
try{
IloInt i, j;//i for size and j for cutting pattern
IloNumArray rollWidth(env);//the standard width of rolls
IloNumArray rollCost(env);//the standard cost of rolls
IloNumArray amount(env);//the wanted amount of cilents
IloNumArray size(env);//the wanted size of cilents
readData("mcutstock.dat", rollWidth, rollCost, size, amount);//input the data of the problem instance
//system("pause");//check out the data
/*cutting-optimization problem, aka master problem*/
IloModel costOpt(env);//declare the model for the master problem
IloObjective RollsUsed = IloAdd(costOpt, IloMinimize(env));//add objective to model costOpt
IloRangeArray Fill = IloAdd(costOpt, IloRangeArray(env, amount, IloInfinity));//add constraints to model costOpt, amount is the lower bound and Ilofinity is the upper bound
IloNumVarArray Cut(env); //declare decision variables for the master problem, aka x_j; Note that the variables are initialized with numVar
/*initial cutting pattern*/
for (j = 0; j < size.getSize();j++){
/*
add the coefficients of variables by column;
"RollsUsed(rollCost[j])"" means the coefficient of the varibale is rollCost[i];
"Fill[j](int(rollWidth / size[j]))" means the coefficient of the variable in the j-th constraint is int(rollWidth / size[j]);
this program cuts a standard roll with single size as initial solution.
*/
Cut.add(IloNumVar(RollsUsed(rollCost[0]) + Fill[j](int(rollWidth[0] / size[j]))));
}
IloCplex costSolver(costOpt);//declare the solver for the master problem
/*pattern-generation problems, aka subproblems*/
IloModelArray patGen(env, rollWidth.getSize());
IloObjectiveArray ReducedCost(env, rollWidth.getSize());
IloCplexArray patSolver(env, rollWidth.getSize());
NumVarMatrix2 Use(env, rollWidth.getSize());
for (i = 0; i < rollWidth.getSize();i++){
patGen[i] = IloModel(env);//declare the model for subproblems
ReducedCost[i] = IloAdd(patGen[i], IloMaximize(env, -rollCost[i]));//"IloMinimize(env, -rollCost[i])" means the objective function initialize with a constant -rollCost[i], -rollCost[i] is the coefficient of the variable in the objective function
Use[i] = IloNumVarArray(env, size.getSize());
for (j = 0; j < size.getSize();j++){
Use[i][j]=IloNumVar(env, 0.0, IloInfinity, ILOINT); //declare integer decision variables for the subproblems, aka A_i
}
patGen[i].add(IloScalProd(size, Use[i]) <= rollWidth[i]);//(product) add constraints
patSolver[i] = IloCplex(patGen[i]);//declare the solver for subproblems
}
/*column-generation procedure*/
IloNumArray price(env, size.getSize());//declare container for the shadow price, aka the cofficients of objective function for subproblems
IloNumArray newPatt(env, size.getSize());//declare the container for new column
IloBool Z;
IloInt iter = 0;
IloInt index;
IloNum max;
for (;;){
Z = 0;
iter++;
cout << "Iteration " << iter << "......" << endl;
/*optimize the current pattern, aka solve the current master problem*/
cout << "Solving Master Problem..." << endl;
costSolver.solve();//solve the master proble
costSolver.exportModel("MP.lp");//export the model as lp file
report_MP(costSolver, Cut, Fill);
/*find and add a new pattern*/
for (i = 0; i < size.getSize(); i++)
{
price[i] = costSolver.getDual(Fill[i]);
}
for (i = 0; i < rollWidth.getSize();i++){
ReducedCost[i].setLinearCoefs(Use[i], price);//set the linear coefficients of objective function for subproblems
cout << "Solving Subproblem " << i + 1 << "..." << endl;
patSolver[i].solve();//solve the subproblem
patSolver[i].exportModel("SP.lp");
report_SP(patSolver[i], Use[i], ReducedCost[i]);
//system("pause");//pause to check out the lp files
}
/*if no redeced cost of the patterns is postive, stop searching for columns*/
for (i = 0; i < rollWidth.getSize();i++){
if(patSolver[i].getValue(ReducedCost[i]) >= RC_EPS){
Z = 1;
}
}
index = 0;
max = patSolver[0].getValue(ReducedCost[0]);
if(rollWidth.getSize() > 1){
for (i = 1; i < rollWidth.getSize();i++){
if(patSolver[i].getValue(ReducedCost[i])>max){
max = patSolver[i].getValue(ReducedCost[i]);
index = i;
}
}
}
if (!Z){
break;
}
patSolver[index].getValues(newPatt, Use[index]);//copy the values of "Use" to "newPatt", aka let newPattern be the new column
Cut.add(IloNumVar(RollsUsed(rollCost[index]) + Fill(newPatt)));//add new column to the master problem
//system("pause");//pause to check out the lp files
}
costOpt.add(IloConversion(env, Cut, ILOINT));//transfer numVar "Cut" into intVar
costSolver.solve();//solve the last master problem
cout << "Solution status: " << costSolver.getStatus() << endl;//output the solving status
report_FP(costSolver, Cut);
}
catch(IloException& ex){
cerr << "Error: " << ex << endl;
}
catch(...){
cerr << "Error" << endl;
}
env.end();
/*---------------------------------Timer end---------------------------------*/
endTime = clock();
cout << endl;
cout << "Totle Time : " << (double)(endTime - startTime) / CLOCKS_PER_SEC << "s" << endl;
return 0;
}
2.3.2 Analysis
该问题中,卷材只有一种标准长度,客户需求的长度可以有多种,数量不定。目标函数为所有卷材的成本(卷材单位成本为rollCost,要计算所用卷材数量的话,可将所有卷材成本设为1)。
标签:rollWidth,Column,0.5,Cplex,C++,env,quad,problem,size 来源: https://blog.csdn.net/Aidenlazz/article/details/112981696