编程语言
首页 > 编程语言> > 强一致性算法

强一致性算法

作者:互联网

分布式系统对fault tolorence的一般解决方案是state machine replication

主从同步复制
Master接受写请求
Master复制日志到Slave
Master等待,直到所有从库返回

问题:一个节点失败,Master阻塞,导致整个集群不可用,保证了一致性,可用性大大降低。

多数派
每次写入保证写入大于N/2个节点 每次读保证从大于N/2个节点读
问题:
在并发环境下,无法保证系统的正确性,顺序很重要。


Paxos
1. Basic Paxos
Client : 系统外部角色,请求发起者。像民众
Propser :接受Client的请求,向集群提出提议(propose)。并在冲突发生时,起到冲突协调的作用。像议员,替民众提出议案。
Accepetor(Vector):提议投票和接收者,只有在形成法定人数时(Quorum,为多数派),提议才会最终被接受,像国会。
Learner:提议接受者,backup,备份,对集群的一致性没有影响。像记录员。

步骤,阶段

基本流程:


部分节点失败,到达到了Quoroms。

Proposer失败

一个proposer失败,会启用另外一个proposer

活锁问题(dueling)
问题:难以实现,效率低(要经过2轮RPC),活锁

2. Multi Paxos
只有一个proposer,不存在活锁问题。

只有再最开始的时候需要2轮RPC。以后只需要一轮RPC.
减少角色,进一步简化


3. Raft
划分为3个子问题:

Leader Election
Log Replication
Safety

重定义角色:
Leader
Fellower
Candidate(候选人)

动画解释:
Raft动画演示

选Leader
设置timeout
同步log
Leader不断地向fellow发送心跳包,数据也夹杂在心跳包中。
保证safty
失败地行为 分区行为
场景测试:

Raft场景测试

ZAB
raft为了保证日志连续性,心跳方向为leader至follower。ZAB则相反。

分布式锁
实际应用中,主要使用Zookeeper和Etcd

Zookeeper
内部使用ZAB

etcd
内部使用Raft
---------------------
作者:SeuLJ
来源:CSDN
原文:https://blog.csdn.net/yaotai8135/article/details/83050138
版权声明:本文为博主原创文章,转载请附上博文链接!

标签:活锁,proposer,算法,Master,一致性,Raft,节点,RPC
来源: https://www.cnblogs.com/mkl34367803/p/10704363.html