编程语言
首页 > 编程语言> > Python 散列表查询_进入<哈希函数>为结界的世界

Python 散列表查询_进入<哈希函数>为结界的世界

作者:互联网

1. 前言

哈希表或称为散列表,是一种常见的、使用频率非常高的数据存储方案。

哈希表属于抽象数据结构,需要开发者按哈希表数据结构的存储要求进行 API 定制,对于大部分高级语言而言,都会提供已经实现好的、可直接使用的 API,如 JAVA 中有 MAP 集合、C++ 中的 MAP 容器,Python 中的字典……

使用者可以使用 API 中的方法完成对哈希表的增、删、改、查……一系列操作。

如何学习哈希表?

可以从 2 个角度开始:

2. 哈希表

什么是哈希表?

哈希表是基于对存储的数据结构,底层一般采用的是列表(数组)

大家都知道,基于列表(数组)的查询速度非常快,时间复杂度是 O(1),常量级别的。

列表的底层存储结构是连续的内存区域,只要给定数据在列表(数组)中的位置,就能直接查询到数据。理论上是这么回事,但在实际操作过程,查询数据的时间复杂度却不一定是常量级别的。

如存储下面的学生信息,学生信息包括学生的姓名和学号。在存储学生数据时,如果把学号为 0 的学生存储在列表 0 位置,学号为 1 的学生存储在列表 1 位置……

hx01.png

这里把学生的学号和列表的索引号进行关联,查询某一个学生时,知道了学生的学号也就知道了学生数据存储在列表中的位置,可以认为查询的时间复杂度为 O(1)

之所以可以达到常量级,是因为这里有信息关联(学生学号关联到数据的存储位置)。

还有一点,学生的学号是公开信息也是常用信息,很容易获取。

但是,不是存储任何数据时,都可以找到与列表位置相关联的信息。比如存储所有的英文单词,不可能为每一个英文单词编号,即使编号了,编号在这里也仅仅是流水号,没有数据含义的数据对于使用者来讲是不友好,谁也无法记住哪个英文单词对应哪个编号。

所以使用列表存储英文单词后需要询时,因没有单词的存储位置。还是需要使用如线性二分……之类的查询算法,这时的时间复杂度由使用的查询算法的时间复杂度决定。

如果对上述存储在列表的学生信息进行了插入删除……等操作,改变了数据原来的位置后,因破坏了学号与位置关联信息,再查询时也只能使用其它查询算法,不可能达到常量级。

是否存在一种方案,能最大化地优化数据的存储和查询?

通过上述的分析,可以得出一个结论,要提高查询的速度,得想办法把数据位置进行关联。而哈希表的核心思想便是如此。

2.1 哈希函数

哈希表引入了关键字概念,关键字可以认为是数据的别名。如上表,可以给每一个学生起一个别名,这个就是关键字

hx02.png

Tip: 这里的关键字是姓名的拼音缩写,关键字数据的关联性较强,方便记忆和查询。

有了关键字后,再把关键字映射成列表中的一个有效位置,映射方法就是哈希表中最重要的概念哈希函数

关键字是一个桥梁,即关联到真正数据又关联到哈希表中的位置。

关键字也可以是需要保存的数据本身。

哈希函数的功能:提供把关键字映射到列表中的位置算法,是哈希表存储数据的核心所在。如下图,演示数据哈希函数哈希表之间的关系,可以说哈希函数是数据进入哈希表的入口。

hx03.png

数据最终会存储在列表中的哪一个位置,完全由哈希算法决定。

当需要查询学生数据时,同样需要调用哈希函数关键字进行换算,计算出数据在列表中的位置后就能很容易查询到数据。

如果忽视哈希函数的时间复杂度,基于哈希表的数据存储和查询时间复杂度是 O(1)

如此说来哈希函数算法设计的优劣是影响哈希表性能的关键所在。

2.2 哈希算法

哈希算法决定了数据的最终存储位置,不同的哈希算法设计方案,也关乎哈希表的整体性能,所以,哈希算法就变得的尤为重要。

下文将介绍并纵横比较几种常见的 哈希算法的设计方案。

Tip: 无论使用何种哈希算法,都有一个根本,哈希后的结果一定是一个数字,表示列表(哈希表)中的一个有效位置。也称为哈希值

使用哈希表存储数据时,关键字可以是数字类型也可以是非数字类型,其实,关键字可以是任何一种类型。这里先讨论当关键字为非数字类型时设计哈希算法的基本思路。

如前所述,已经为每一个学生提供了一个以姓名的拼音缩写的关键字

现在如何把关键字映射到列表的一个有效位置?

这里可以简单地把拼音看成英文中的字母,先分别计算每一个字母在字母表中的位置,然后相加,得到的一个数字。

使用上面的哈希思想对每一个学生的关键字进行哈希:

前文说过哈希值是表示数据在列表中的存储位置,现在假设一种理想化状态,学生的姓名都是 3 个汉字,意味着关键字也是 3 个字母,采用上面的的哈希算法,最大的哈希值应该是zzz=26+26+26=78,意味着至少应该提供一个长度为 78的列表 。

如果,现在仅仅只保存 4 名学生,虽然只有 4 名学生,因无法保证学生的关键字不出现zzz,所以列表长度还是需要 78。如下图所示。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-sY2XOwRg-1652143602408)(http://www.icode9.com/i/li/?n=2&i=images/20220510/1652143515926702.png?,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=)]

采用这种哈希算法会导致列表的空间浪费严重,最直观想法是对哈希值再做约束,如除以 4 再取余数,把哈希值限制在 4 之内,4 个数据对应 4 个哈希值。我们称这种取余数方案为取余数算法

取余数法中,被除数一般选择小于哈希表长度的素数。本文介绍其它哈希算法时,也会使用取余数法对哈希值进行适当范围的收缩。

重新对 4 名学生的关键字进行哈希。

hx05.png

演示图上出现了一个很奇怪的现象,没有看到李连杰的存储信息。

4个存储位置存储 4学生,应该是刚刚好,但是,只存储了 3名学生。且还有 1个位置是空闲的。现在编码验证一下,看是不是人为因素引起的。

'''
哈希函数
'''
def hash_code(key):
    # 设置字母 A 的在字母表中的位置是 1
    pos = 0
    for i in key:
        i = i.lower()
        res = ord(i) - ord('a') + 1
        pos += res
    return pos % 4

测试代码:

# 哈希表
hash_table = [None] * 4
# 计算关键字的哈希值
idx = hash_code('zjl')
# 根据关键字换算出来的位置存储数据
hash_table[idx] = '周杰伦'
idx = hash_code('llj')
hash_table[idx] = '李连杰'
idx = hash_code('cl')
hash_table[idx] = '成龙'
idx = hash_code('zzz')
hash_table[idx] = '张志忠'
print('哈希表中的数据:', hash_table)
'''
输出结果:
哈希表中的数据: ['周杰伦', None, '张志忠', '成龙']
'''

执行代码,输出结果,依然还是没有看到李连杰的信息。

原因何在?

这是因为李连杰张志忠的哈希值都是 2 ,导致在存储时,后面存储的数据会覆盖前面存储的数据,这就是哈希中的典型问题,哈希冲突问题

所谓哈希冲突,指不同的关键字在进行哈希算法后得到相同的哈希值,这意味着,不同关键字所对应的数据会存储在同一个位置,这肯定会发生数据丢失,所以需要提供算法,解决冲突问题。

Tip: 研究哈希表,归根结底,是研究如何计算哈希值以及如何解决哈希值冲突的问题。

针对上面的问题,有一种想当然的冲突解决方案,扩展列表的存储长度,如把列表扩展到长度为 8

直观思维是:扩展列表长度,哈希值的范围会增加,冲突的可能性会降低。

'''
哈希函数
'''
def hash_code(key):
    # 设置字母 A 的在字母表中的位置是 1
    pos = 0
    for i in key:
        i = i.lower()
        res = ord(i) - ord('a') + 1
        pos += res
    return pos % 8

# 哈希表
hash_table = [None] * 8

# 保存所有学生
idx = hash_code('zjl')
hash_table[idx] = '周杰伦'
idx = hash_code('llj')
hash_table[idx] = '李连杰'
idx = hash_code('cl')
hash_table[idx] = '成龙'
idx = hash_code('zzz')
hash_table[idx] = '张志忠'
print('哈希表中的数据:', hash_table)
'''
输出结果:
哈希表中的数据: ['周杰伦', None, '李连杰', None, None, None, '张志忠', '成龙']
'''

hx06.png

貌似解决了冲突问题,其实不然,当试着设置列表的长度为678910时,只有当长度为 8时没有发生冲突,这还是在要存储的数据是已知情况下的尝试。

如果数据是动态变化的,显然这种扩展长度的方案绝对不是本质解决冲突的方案。即不能解决冲突,且产生大量空间浪费。

如何解决哈希冲突,会在后文详细介绍,这里还是回到哈希算法上。

综上所述,我们对哈希算法的理想要求是:

现实情况是,同时满足这 2 个条件的哈希算法几乎是不可能有的,面对数据量较多时,哈希冲突是常态。所以,只能是尽可能满足。

因冲突的存在,即使为 100 个数据提供 100 个有效存储空间,还是会有空间闲置。这里把实际使用空间和列表提供的有效空间相除,得到的结果,称之为哈希表的占有率(载荷因子)

如上述,当列表长度为 4时, 占有率为 3/4=0.75,当列表长度为 8 时,占有率为 4/8=0.5,一般要求占率控制 在0.6~0.9之间。

2.3 常见哈希算法

前面在介绍什么是哈希算法时,提到了取余数法,除此之外,还有几种常见的哈希算法

2.3.1 折叠法

折叠法:关键字分割成位数相同的几个部分(最后一部分的位数可以不同)然后取这几部分的叠加和(舍去进位)作为哈希值。

折叠法又分移位叠加和间界叠加。

因有相加求和计算,折叠法适合数字类型或能转换成数字类型的关键字。假设现在有很多商品订单信息,为了简化问题,订单只包括订单编号和订单金额。

现在使用用哈希表存储订单数据,且以订单编号为关键字,订单金额为

订单编号 订单金额
20201011 400.00
19981112 300.00
20221212 200

移位叠法换算关键字的思路:

第一步:把订单编号 20201011 按每3位一组分割,分割后的结果:202、010、11

2 位一组还是 3 位一组进行分割,可以根据实际情况决定。

第二步: 把分割后的数字相加 202+010+11,得到结果:223。再使用取余数法,如果哈希表的长度为 10,则除以 10后的余数为3

这里除以 10 仅是为了简化问题细节,具体操作时,很少选择列表的长度。

第三步:对其它的关键字采用相同的处理方案。

关键字 哈希值
20201011 3
19981112 2
20221212 6

编码实现保存商品订单信息:

'''
移位叠加哈希算法
'''
def hash_code(key, hash_table_size):
    # 转换成字符串
    key_s = str(key)
    # 保存求和结果
    s = 0
    # 使用切片
    for i in range(0, len(key_s), 3):
        s += int(key_s[i:i + 3])
    return s % hash_table_size

# 商品信息
products = [[20201011, 400.00], [19981112, 300], [20221212, 200]]
# 哈希表长度
hash_size = 10
# 哈希表
hash_table = [None] * hash_size
# 以哈希表方式进行存储
for p in products:
    key = hash_code(p[0], hash_size)
    hash_table[key] = p[1]
# 显示哈希表中的数据
print("哈希表中的数据:",hash_table)
# 根据订单号进行查询
hash_val = hash_code(19981112, hash_size)
val = hash_table[hash_val]
print("订单号为{0}的金额为{1}".format(19981112, val))
'''
输出结果
哈希表中的数据: [None, None, 300, 400.0, None, None, 200, None, None, None]
订单号为19981112的金额为300
'''

间界叠加法:

间界叠加法,会间隔地把要相加的数字进行反转。

如订单编号 199811123位一组分割,分割后的结果:199、811、12,间界叠加操作求和表达式为 199+118+12=339,再把结果 339 % 10=9

编码实现间界叠加算法:

'''
间界叠加哈希算法
'''
def hash_code(key, hash_table_size):
    # 转换成字符串
    key_s = str(key)
    # 保存求和结果
    s = 0
    # 使用切片
    for i in range(0, len(key_s), 3):
        # 切片
        tmp_s = key_s[i:i + 3]
        # 反转
        if i % 2 != 0:
            tmp_s = tmp_s[::-1]
        s += int(tmp_s)
    return s % hash_table_size

# 商品信息(数据样例)
products = [[20201011, 400.00], [19981112, 300], [20221212, 200]]
# 哈希表长度
hash_size = 10
# 哈希表
hash_table = [None] * hash_size
# 以哈希表方式进行存储
for p in products:
    key = hash_code(p[0], hash_size)
    hash_table[key] = p[1]
# 显示哈希表中的数据
print("哈希表中的数据:", hash_table)
# 根据订单号进行查询
hash_val = hash_code(19981112, hash_size)
val = hash_table[hash_val]
print("订单号为{0}的金额为{1}".format(19981112, val))
'''
输出结果:
哈希表中的数据: [None, None, None, 400.0, None, None, 200, None, None, 300]
订单号为19981112的金额为300
'''

2.3.2 平方取中法

平方取中法:先是对关键字求平方,再在结果中取中间位置的数字。

求平方再取中算法,是一种较常见的哈希算法,从数学公式可知,求平方后得到的中间几位数字与关键字的每一位都有关,取中法能让最后计算出来的哈希值更均匀。

因要对关键字求平方,关键字只能是数字或能转换成数字的类型,至于关键字本身的大小范围限制,要根据使用的计算机语言灵活设置。

如下面的图书数据,图书包括图书编号和图书名称。现在需要使用哈希表保存图书信息,以图书编号为关键字,图书名称为值。

图书编号 图书名称
58 python 从入门到精通
67 C++ STL
78 Java 内存模型

使用平方取中法计算关键字的哈希值:

第一步:对图书编号 58 求平方,结果为 3364

第二步:取 3364的中间值36,然后再使用取余数方案。如果哈希表的长度为 10,则 36%10=6

第三步:对其它的关键字采用相同的计算方案。

编码实现平方取中算法:

'''
哈希算法
平方取中
'''
def hash_code(key, hash_table_size):
    # 求平方
    res = key ** 2
    #  取中间值,这里取中间 2 位(简化问题)
    res = int(str(res)[1:3])
    # 取余数
    return res % hash_table_size

hash_table_size = 10
hash_table = [None]*hash_table_size
# 图书信息
books = [[58, "python 从入门到精通"], [67, "C++ STL"], [78, "Java 内存模型"]]
for b in books:
    hash_val = hash_code(b[0],hash_table_size)
    hash_table[hash_val]=b[1]

# 显示哈希表中的数据
print("哈希表中的数据:", hash_table)
# 根据编号进行查询
hash_val = hash_code(67, hash_table_size)
val = hash_table[hash_val]
print("编号为{0}的书名为{1}".format(67, val))

上述求平方取中间值的算法仅针对于本文提供的图书数据,如果需要算法具有通用性,则需要根据实际情况修改。

不要被 取中字所迷惑,不一定是绝对中间位置的数字。

2.3.3 直接地址法

直接地址法:提供一个与关键字相关联的线性函数。如针对上述图书数据,可以提供线性函数 f(k)=2*key+10

系数2和常数10的选择会影响最终生成的哈希值的大小。可以根据哈希表的大小和操作的数据含义自行选择。

key 为图书编号。当关键字不相同时,使用线性函数得到的值也是唯一的,所以,不会产生哈希冲突,但是会要求哈希表的存储长度比实际数据要大。

这种算法在实际应用中并不多见。

实际应用时,具体选择何种哈希算法,完全由开发者定夺,哈希算法的选择没有固定模式可循,虽然上面介绍了几种算法,只是提供一种算法思路。

2.4 哈希冲突

哈希冲突是怎么引起的,前文已经说过。现在聊聊常见的几种哈希冲突解决方案。

2.4.1 线性探测

当发生哈希冲突后,会在冲突位置之后寻找一个可用的空位置。如下图所示,使用取余数哈希算法,保存数据到哈希表中。

哈希表的长度设置为 15,除数设置为 13

hx07.png

解决冲突的流程:

  1. 7826的哈希值都是 0。而因为7826的前面,78先占据哈希表的 0位置。

  2. 当存储 26时,只能以 0位置为起始位置,向后寻找空位置,因 1位置没有被其它数据占据,最终保存在哈希表的1位置。

  3. 当存储数字 14时,通过哈希算法计算,其哈希值是1,本应该要保存在哈希表中1的位置,因1位置已经被26所占据,只能向后寻找空位置,最终落脚在2位置。

线性探测法让发生哈希冲突的数据保存在其它数据的哈希位置,如果冲突的数据较多,则占据的本应该属于其它数据的哈希位置也较多,这种现象称为哈希聚集

查询流程:

以查询数据14为例。

  1. 计算 14的哈希值,得到值为 1 ,根据哈希值在哈希表中找到对应位置。
  2. 查看对应位置是否存在数据,如果不存在,宣告查询失败,如果存在,则需要提供数据比较方法。
  3. 1位置的数据 26并不等于14。于是,继续向后搜索,并逐一比较。
  4. 最终可以得到结论14在哈希表的编号为2的位置。

所以,在查询过程中,除了要提供哈希函数,还需要提供数据比较函数。

删除流程:

以删除数字26为例。

  1. 按上述的查询流程找到数字26在哈希表中的位置1

  2. 设置位置1为删除状态,一定要标注此位置曾经保存过数据,而不能设置为空状态。为什么?

    如果设置为空状态,则在查询数字14时,会产生错误的返回结果,会认为 14不存在。为什么?自己想想。

编码实现线性探测法:

添加数据:

'''
线性探测法解决哈希冲突
'''
def hash_code(key, hash_table, num):
    # 哈希表的长度
    size = len(hash_table)
    # 取余数法计算哈希值
    hash_val = key % num
    # 检查此位置是否已经保存其它数据
    if hash_table[hash_val] is not None:
        # 则从hash_val 之后寻找空位置
        for i in range(hash_val + 1, size + hash_val):
            if i >= size:
                i = i % size
            if hash_table[i] is None:
                hash_val = i
                break
    return hash_val

# 哈希表
hash_table = [None] * 15
src_nums = [25, 78, 56, 32, 88, 26, 73, 81, 14]
for n in src_nums:
    hash_val = hash_code(n, hash_table, 13)
    hash_table[hash_val] = n

print("哈希表中的数据:", hash_table)
'''
输出结果:
哈希表中的数据: [78, 26, 14, 81, 56, None, 32, None, 73, None, 88, None, 25, None, None]
'''

Tip:为了保证当哈希值发生冲突后,如果从冲突位置查到哈希表的结束位置还是没有找到空位置,则再从哈希表的起始位置,也就是 0 位置再搜索到冲突位置。冲突位置是起点也是终点,构建一个查找逻辑环,以保证一定能找到空位置。

for i in range(hash_val + 1, size + hash_val):
	 pass

基于线性探测的数据查询过程和存储过程大致相同:

def get(key, hash_table, num):
    # 哈希表的长度
    size = len(hash_table)
    # 取余数法计算哈希值
    hash_val = key % num
    is_exist = False
    # 检查此位置是否已经保存其它数据
    if hash_table[hash_val] is None:
        # 不存在
        return None
    if hash_table[hash_val] != key:
        # 则从hash_val 之后寻找空位置
        for i in range(hash_val + 1, size + hash_val):
            if i >= size:
                i = i % size
            if hash_table[i] == key:
                hash_val = i
                is_exist = True
                break
    else:
        is_exist=True
    if is_exist:
        return hash_val

# 测试   
res = get(25, hash_table, 13)
print(res)

为了减少数据聚集,可以采用增量线性探测法,所谓增量指当发生哈希冲突后,探测空位置时,使用步长值大于 1的方式跳跃式向前查找。目的是让数据分布均匀,减小数据聚集。

除了采用增量探测之外,还可以使用再哈希的方案。也就是提供 2 个哈希函数,第 1 次哈希值发生冲突后,再调用第 2 个哈希函数再哈希,直到冲突不再产生。这种方案会增加计算时间。

2.4.4 链表法

上面所述的冲突解决方案的核心思想是,当冲突发生后,在哈希表中再查找一个有效空位置。

这种方案的优势是不会产生额外的存储空间,但易产生数据聚集,会让数据的存储不均衡,并且会违背初衷,通过关键字计算出来的哈希值并不能准确描述数据正确位置。

链表法应该是所有解决哈希冲突中较完美的方案。所谓链表法,指当发生哈希冲突后,以冲突位置为首结点构建一条链表,以链表方式保存所有发生冲突的数据。如下图所示:

hx08.png

链表方案解决冲突,无论在存储、查询、删除时都不会影响其它数据位置的独立性唯一性,且因链表的操作速度较快,对于哈希表的整体性能都有较好改善。

使用链表法时,哈希表中保存的是链表的首结点。首结点可以保存数据也可以不保存数据。

编码实现链表法:链表实现需要定义 2 个类,1 个是结点类,1 个是哈希类。

'''
结点类
'''
class HashNode():
    def __init__(self, value):
        self.value = value
        self.next_node = None

'''
哈希类
'''
class HashTable():
    def __init__(self):
        # 哈希表,初始大小为 15,可以根据需要动态修改
        self.table = [None] * 15
        # 实际数据大小
        self.size = 0

    '''
    存储数据
    key:关键字
    value:值
    '''

    def put(self, key, value):
        hash_val = self.hash_code(key)
        # 新结点
        new_node = HashNode(value)
        if self.table[hash_val] is None:
            # 本代码采用首结点保存数据方案
            self.table[hash_val] = new_node
            self.size+=1
        else:
            move = self.table[hash_val]
            while move.next_node is not None:
                move = move.next_node
            move.next_node = new_node
            self.size+=1

    '''
    查询数据
    '''
    def get(self, key):
        hash_val = self.hash_code(key)
        if self.table[hash_val] is None:
            # 数据不存在
            return -1

        if self.table[hash_val].value == key:
            # 首结点就是要找的数据
            return self.table[hash_val].value

        # 移动指针
        move = self.table[hash_val].next_node
        while move.value != key and move is not None:
            move = move.next_node
        if move is None:
            return -1
        else:
            return move.value

    def hash_code(self, key):
        # 这里仅为说明问题,13 的选择是固定的
        hash_val = key % 13
        return hash_val


# 原始数据
src_nums = [25, 78, 56, 32, 88, 26, 39, 82, 14]
# 哈希对象
hash_table = HashTable()
# 把数据添加到哈希表中
for n in src_nums:
    hash_table.put(n, n)
# 输出哈希表中的首结点数据
for i in hash_table.table:
    if i is not None:
        print(i.value,end=" ")
print("\n-------------查询-----------")
print(hash_table.get(26))
'''
输出结果:
78 14 56 32 88 25 
-------------查询-----------
26
'''

3.总结

哈希表是一种高级数据结构,其存储、查询性能非常好,在不考虑哈希哈希算法和哈希冲突的时间复杂度情况下,哈希查找时间复杂度可以达到常量级,成为很多实际应用场景下的首选。

研究哈希表,着重点就是搞清楚哈希算法以及如何解决哈希冲突。在算法的世界时,没有固定的模式,开发者可以根据自己的需要自行设计哈希算法。

标签:None,hash,key,val,Python,列表,哈希,结界,table
来源: https://www.cnblogs.com/guo-ke/p/16252065.html