安卓CameraX基于虹软人脸识别程序开发
作者:互联网
一、前言
需求:根据镜头内看到的人脸,获取其在系统中注册的用户信息
设计方案:
①注册:用户通过前端系统自拍图片发送给后端注册。后端对图片进行人脸特征数据分析,将特征数据保存到用户数据库。
②识别:用户正对设备镜头,通过前端识别到人脸时,对人脸分析获取特征数据,将特征数据发送给后端获取用户信息。后端比对特征数据,将相似度0.9以上中最高的用户返回。
准备:虹软注册账号获取APP_ID和SDK_KEY(付费版还要一个Active_Key)和下载SDK
二、初始SDK
要使用SDK,得先把sdk放到项目里,然后首次需要激活SDK,每次使用SDK需要初始化
1、先切换到Project视图,将下载的SDK 放到对应位置。然后在build.gradle中引入一下
2、到MainActive中先激活SDK,实际生产中不要每次都去激活,记录首次取激活就好了
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
toActiveFaceSDK(); // 激活
}
public void toActiveFaceSDK(){
int status=FaceEngine.activeOnline(this, 你的APP_ID, 你的SDK_KEY);
if(status == ErrorInfo.MOK || status == ErrorInfo.MERR_ASF_ALREADY_ACTIVATED){
Toast.makeText(this, "激活成功", Toast.LENGTH_LONG).show();
initEngine();//激活成功那就去初始化SDK,准备使用
}else if(status == ErrorInfo.MERR_ASF_VERSION_NOT_SUPPORT){
Toast.makeText(this, "安卓版本不支持人脸识别", Toast.LENGTH_LONG).show();
}else{
Toast.makeText(this, "激活失败,状态码:" + status, Toast.LENGTH_LONG).show();
}
}
3、初始化SDK,准备使用,每次页面onDestroy的时候记得对应卸载SDK
public void initEngine(){ // 初始化sdk
faceObj = new FaceEngine();
DetectFaceOrientPriority ftOrient = DetectFaceOrientPriority.ASF_OP_ALL_OUT; // 默认是对拿到的图像进行全角度检测
// DetectFaceOrientPriority ftOrient = DetectFaceOrientPriority.ASF_OP_270_ONLY; // 270
afCode = faceObj.init(that.getApplicationContext(),
DetectMode.ASF_DETECT_MODE_VIDEO,ftOrient,16, 3,
faceObj.ASF_FACE_DETECT | faceObj.ASF_AGE |faceObj.ASF_FACE3DANGLE
|faceObj.ASF_GENDER | faceObj.ASF_LIVENESS| faceObj.ASF_FACE_RECOGNITION);
if (afCode != ErrorInfo.MOK) {
if(afCode == ErrorInfo.MERR_ASF_NOT_ACTIVATED){
Toast.makeText(this, "设备SDK未激活", Toast.LENGTH_LONG).show();
}else{
Toast.makeText(this, "初始化失败"+afCode, Toast.LENGTH_LONG).show();
}
}
}
public void unInitEngine() { //卸载SDK
if (afCode == 0) {
afCode = faceObj.unInit();
}
}
三、配置相机
安卓Camera API到目前为止已有三代,ArcFace官方教程给的是Camera 1,但我在AS中引入的时候,会划删除线,提示Out并建议使用Camera2替代。于是乎,我使用Camera2去尝试替换官方的一代写法,虽然勉强成功,但是说实在的各种适配问题层出不穷,里面做适配写的代码占了一大半。So 最终我使用了CameraX,就这个预览自适应,就已经天下无敌了!推荐《为什么使用CameraX》。
1、CameraX需要在build.gradle中引入几个包,如下:
def camerax_version = "1.1.0-alpha08"
implementation("androidx.camera:camera-core:${camerax_version}")
implementation("androidx.camera:camera-camera2:${camerax_version}")
implementation("androidx.camera:camera-lifecycle:${camerax_version}")
implementation("androidx.camera:camera-view:1.0.0-alpha25")
implementation("androidx.camera:camera-extensions:1.0.0-alpha25")
2、创建预览View
页面定义变量
public int rational;
private Size mImageReaderSize;
private FaceEngine faceObj; //sdk对象
private int afCode = -1; // sdk状态
private ProcessCameraProvider cameraProvider = null; // cameraX对象
private Preview mPreviewBuild = null; //cameraX的preview
private PreviewView viewFinder = null; // X的自带预览view
private byte[] nv21 = null; // 实时nv21图像流
protected void onCreate()(
RelativeLayout layout=that.findViewById(R.id.camerax_preview);
viewFinder =new PreviewView(that);//我是动态创建了个Preview,你也可以在页面直接写上
layout.addView(viewFinder);
Point screenSize = new Point(); // 获取屏幕总宽高
getWindowManager().getDefaultDisplay().getSize(screenSize);//getRealSize就会包括状态栏
rational = aspectRatio(screenSize.x, screenSize.y);
startCameraX();
}
private double RATIO_4_3_VALUE = 4.0 / 3.0;
private double RATIO_16_9_VALUE = 16.0 / 9.0;
private int aspectRatio(int width, int height) {
double previewRatio = Math.max(width, height) * 1.00 / Math.min(width, height);
if (Math.abs(previewRatio - RATIO_4_3_VALUE) <= Math.abs(previewRatio - RATIO_16_9_VALUE)) {
return AspectRatio.RATIO_4_3;
}
return AspectRatio.RATIO_16_9;
}
3、初始化相机
private void startCameraX() {
ListenableFuture<ProcessCameraProvider> providerFuture = ProcessCameraProvider.getInstance(that);
providerFuture.addListener(() -> {
try { // 检测CameraProvider可用性
cameraProvider = providerFuture.get();
} catch (ExecutionException | InterruptedException e) {
Toast.makeText(this, "相机X不可用", Toast.LENGTH_LONG).show();
e.printStackTrace();
return;
}
CameraSelector cameraSelector = new CameraSelector.Builder().requireLensFacing(
CameraSelector.LENS_FACING_FRONT
// CameraSelector.LENS_FACING_BACK
).build();
//绑定预览
mPreviewBuild = new Preview.Builder()
// .setTargetRotation(Surface.ROTATION_180)//设置预览旋转角度
.build();
mPreviewBuild.setSurfaceProvider(viewFinder.getSurfaceProvider()); // 绑定显示
// 图像分析,监听试试获取的图像流
ImageAnalysis imageAnalysis = new ImageAnalysis.Builder()
.setTargetAspectRatio(rational)
.setBackpressureStrategy(ImageAnalysis.STRATEGY_KEEP_ONLY_LATEST)
//阻塞模式:ImageAnalysis.STRATEGY_BLOCK_PRODUCER (在此模式下,执行器会依序从相应相机接收帧;这意味着,如果 analyze() 方法所用的时间超过单帧在当前帧速率下的延迟时间,所接收的帧便可能不再是最新的帧,因为在该方法返回之前,新帧会被阻止进入流水线)
//非阻塞模式: ImageAnalysis.STRATEGY_KEEP_ONLY_LATEST (在此模式下,执行程序在调用 analyze() 方法时会从相机接收最新的可用帧。如果此方法所用的时间超过单帧在当前帧速率下的延迟时间,它可能会跳过某些帧,以便 analyze() 在下一次接收数据时获取相机流水线中的最新可用帧)
.build();
imageAnalysis.setAnalyzer(
ContextCompat.getMainExecutor(this),
new FaceAnalyze.MyAnalyzer() //绑定给我的图片分析类
);
// 绑定生命周期前先解绑
cameraProvider.unbindAll();
// 绑定
Camera mCameraX = cameraProvider.bindToLifecycle(
(LifecycleOwner) this
,cameraSelector
,imageAnalysis
,mPreviewBuild);
}, ContextCompat.getMainExecutor(this));
}
4、图片分析类,ImageUtil里的代码最后给出
/**
* 实时预览 Analyzer处理
*/
private class MyAnalyzer implements ImageAnalysis.Analyzer {
private byte[] y;
private byte[] u;
private byte[] v;
private ReentrantLock lock = new ReentrantLock();
private Object mImageReaderLock = 1;//1 available,0 unAvailable
private long lastDrawTime = 0;
private int timerSpace = 300; // 识别间隔
@Override
public void analyze(@NonNull ImageProxy imageProxy) {
@SuppressLint("UnsafeOptInUsageError") Image mediaImage = imageProxy.getImage();
// int rotationDegrees = imageProxy.getImageInfo().getRotationDegrees();
if(mediaImage != null){
synchronized (mImageReaderLock) {
/*识别频率Start 和状态*/
long start = System.currentTimeMillis();
if (start - lastDrawTime < timerSpace || !mImageReaderLock.equals(1)) {
mediaImage.close();
imageProxy.close();
return;
}
lastDrawTime = System.currentTimeMillis();
/*识别频率End*/
//判断YUV类型,我们申请的格式类型是YUV_420_888
if (ImageFormat.YUV_420_888 == mediaImage.getFormat()) {
Image.Plane[] planes = mediaImage.getPlanes();
if (mImageReaderSize == null) {
mImageReaderSize = new Size(planes[0].getRowStride(), mediaImage.getHeight());
}
lock.lock();
if (y == null) {
y = new byte[planes[0].getBuffer().limit() - planes[0].getBuffer().position()];
u = new byte[planes[1].getBuffer().limit() - planes[1].getBuffer().position()];
v = new byte[planes[2].getBuffer().limit() - planes[2].getBuffer().position()];
}
//从planes中分别获取y、u、v 变量数据
if (mediaImage.getPlanes()[0].getBuffer().remaining() == y.length) {
planes[0].getBuffer().get(y);
planes[1].getBuffer().get(u);
planes[2].getBuffer().get(v);
if (nv21 == null) {
nv21 = new byte[planes[0].getRowStride() * mediaImage.getHeight() * 3 / 2];
}
if (nv21 != null && (nv21.length != planes[0].getRowStride() * mediaImage.getHeight() * 3 / 2)) {
return;
}
// 回传数据是YUV422
if (y.length / u.length == 2) {
ImageUtil.yuv422ToYuv420sp(y, u, v, nv21, planes[0].getRowStride(), mediaImage.getHeight());
}
// 回传数据是YUV420
else if (y.length / u.length == 4) {
nv21 = ImageUtil.yuv420ToNv21(mediaImage);
}
//调用Arcsoft算法,获取人脸特征
getFaceInfo(nv21);
}
lock.unlock();
}
}
}
//一定要关闭
mediaImage.close();
imageProxy.close();
}
}
5、进行人脸特征分析
/**
* 获取人脸特征
*/
private int lastFaceID=-1;
private void getFaceInfo(byte[] nv21) {
List<FaceInfo> faceInfoList = new ArrayList<FaceInfo>();
FaceFeature faceFeature = new FaceFeature();
//第一步是送数据给arcsoft sdk,检查是否有人脸信息。
int code = faceObj.detectFaces(nv21, mImageReaderSize.getWidth(),
mImageReaderSize.getHeight(),
faceObj.CP_PAF_NV21, faceInfoList);
//数据检查正常,并且含有人脸信息,则进行下一步的人脸识别。
if (code == ErrorInfo.MOK && faceInfoList.size() > 0) {
int newFaceID = faceInfoList.get(0).getFaceId();// 每次不离镜头的同一人脸,其ID均相同
if (lastFaceID == newFaceID) { // 相同脸则return
Log.i("人脸ID相同", "旧" + lastFaceID);// + "、新" + newFaceID
return;
}
lastFaceID = newFaceID;
// long start = System.currentTimeMillis();
// 特征数据分析部分机型会卡
code = faceObj.extractFaceFeature(nv21, mImageReaderSize.getWidth(), mImageReaderSize.getHeight(),faceObj.CP_PAF_NV21, faceInfoList.get(0), faceFeature);
if (code != ErrorInfo.MOK) {
return;
}
byte[] featureData=faceFeature.getFeatureData();//最终的特征数据!!!
post(featureData); //把数据给后端去查信息
// Log.e(TAG, "特征长度"+faceFeature.getFeatureData().length);
// long end = System.currentTimeMillis();
// Log.e(TAG+lastFaceID, "耗时: "+(end-start)+"ms特征数据---: "+featureData.length);
}
}
四、ImageUtil代码
public class ImageUtil {
/**
* 将Y:U:V == 4:2:2的数据转换为nv21
*
* @param y Y 数据
* @param u U 数据
* @param v V 数据
* @param nv21 生成的nv21,需要预先分配内存
* @param stride 步长
* @param height 图像高度
*/
public static void yuv422ToYuv420sp(byte[] y, byte[] u, byte[] v, byte[] nv21, int stride, int height) {
System.arraycopy(y, 0, nv21, 0, y.length);
// 注意,若length值为 y.length * 3 / 2 会有数组越界的风险,需使用真实数据长度计算
int length = y.length + u.length / 2 + v.length / 2;
int uIndex = 0, vIndex = 0;
for (int i = stride * height; i < length; i += 2) {
nv21[i] = v[vIndex];
nv21[i + 1] = u[uIndex];
vIndex += 2;
uIndex += 2;
}
}
/**
* 将Y:U:V == 4:1:1的数据转换为nv21
*
* @param y Y 数据
* @param u U 数据
* @param v V 数据
* @param nv21 生成的nv21,需要预先分配内存
* @param stride 步长
* @param height 图像高度
*/
public static void yuv420ToYuv420sp(byte[] y, byte[] u, byte[] v, byte[] nv21, int stride, int height) {
System.arraycopy(y, 0, nv21, 0, y.length);
// 注意,若length值为 y.length * 3 / 2 会有数组越界的风险,需使用真实数据长度计算
int length = y.length + u.length + v.length;
int uIndex = 0, vIndex = 0;
for (int i = stride * height; i < length; i++) {
nv21[i] = v[vIndex++];
nv21[i + 1] = u[uIndex++];
}
}
public static byte[] yuv420ToNv21(Image image) {
Image.Plane[] planes = image.getPlanes();
ByteBuffer yBuffer = planes[0].getBuffer();
ByteBuffer uBuffer = planes[1].getBuffer();
ByteBuffer vBuffer = planes[2].getBuffer();
int ySize = yBuffer.remaining();
int uSize = uBuffer.remaining();
int vSize = vBuffer.remaining();
int size = image.getWidth() * image.getHeight();
byte[] nv21 = new byte[size * 3 / 2];
yBuffer.get(nv21, 0, ySize);
vBuffer.get(nv21, ySize, vSize);
byte[] u = new byte[uSize];
uBuffer.get(u);
//每隔开一位替换V,达到VU交替
int pos = ySize + 1;
for (int i = 0; i < uSize; i++) {
if (i % 2 == 0) {
nv21[pos] = u[i];
pos += 2;
}
}
return nv21;
}
public static Bitmap nv21ToBitmap(byte[] nv21,int w, int h) {
YuvImage image = new YuvImage(nv21, ImageFormat.NV21, w, h, null);
ByteArrayOutputStream stream = new ByteArrayOutputStream();
image.compressToJpeg(new Rect(0, 0, w, h), 80, stream);
Bitmap newBitmap = BitmapFactory.decodeByteArray(stream.toByteArray(), 0, stream.size());
try{
stream.close();
}catch (Exception e){}
return newBitmap;
}
}
That's all
Thanks !!!
附:
人脸路程中的坑《人脸识别坑》
二进制的特征数据怎么发给后台,参考我的另外一篇《安卓form-data形式上传二进制》
标签:CameraX,人脸识别,nv21,int,程序开发,private,length,new,byte 来源: https://blog.csdn.net/xj932956499/article/details/121859881