Halcon 自动对焦算法
作者:互联网
1、介绍
图像清晰度是衡量图像质量的一个重要指标,对于相机来说,其一般工作在无参考图像的模式下,所以在拍照时需要进行对焦的控制。对焦不准确,图像就会变得比较模糊不清晰。相机对焦时通过一些清晰度评判指标,控制镜头与CCD的距离,使图像成像清晰。一般对焦时有一个调整的过程,图像从模糊到清晰,再到模糊,确定清晰度峰值,再最终到达最清晰的位置。
常见的图像清晰度评价一般都是基于梯度的方法,本文将介绍五种简单的评价指标,分别是Brenner梯度法、Tenegrad梯度法、laplace梯度法、方差法、能量梯度法。
2、Halcon代码
①、Tenegrad函数
1 //Tenegrad梯度法 2 sobel_amp(Image, EdgeAmplitude, 'sum_sqrt', 3) 3 min_max_gray(EdgeAmplitude, EdgeAmplitude, 0, Min, Max, Range) 4 threshold(EdgeAmplitude, Region1, 20, 255) 5 region_to_bin(Region1, BinImage, 1, 0, Width, Height) 6 mult_image(EdgeAmplitude, BinImage, ImageResult4, 1, 0) 7 mult_image(ImageResult4, ImageResult4, ImageResult, 1, 0) 8 intensity(ImageResult, ImageResult, Value, Deviation)
②、方差函数
1 //方差法 2 region_to_mean(ImageReduced, Image, ImageMean) 3 convert_image_type(ImageMean, ImageMean, 'real') 4 convert_image_type(Image, Image, 'real') 5 sub_image(Image, ImageMean, ImageSub, 1, 0) 6 mult_image(ImageSub, ImageSub, ImageResult, 1, 0) 7 intensity(ImageResult, ImageResult, Value, Deviation)
③、能量函数
1 //能量梯度函数 2 crop_part(Image, ImagePart00, 0, 0, Width-1, Height-1) 3 crop_part(Image, ImagePart01, 0, 1, Width-1, Height-1) 4 crop_part(Image, ImagePart10, 1, 0, Width-1, Height-1) 5 convert_image_type(ImagePart00, ImagePart00, 'real') 6 convert_image_type(ImagePart10, ImagePart10, 'real') 7 convert_image_type(ImagePart01, ImagePart01, 'real') 8 sub_image(ImagePart10, ImagePart00, ImageSub1, 1, 0) 9 mult_image(ImageSub1, ImageSub1, ImageResult1, 1, 0) 10 sub_image(ImagePart01, ImagePart00, ImageSub2, 1, 0) 11 mult_image(ImageSub2, ImageSub2, ImageResult2, 1, 0) 12 add_image(ImageResult1, ImageResult2, ImageResult, 1, 0) 13 intensity(ImageResult, ImageResult, Value, Deviation)
④、Brenner函数
1 //Brenner梯度法 2 crop_part(Image, ImagePart00, 0, 0, Width, Height-2) 3 convert_image_type(ImagePart00, ImagePart00, 'real') 4 crop_part(Image, ImagePart20, 2, 0, Width, Height-2) 5 convert_image_type(ImagePart20, ImagePart20, 'real') 6 sub_image(ImagePart20, ImagePart00, ImageSub, 1, 0) 7 mult_image(ImageSub, ImageSub, ImageResult, 1, 0) 8 intensity(ImageResult, ImageResult, Value, Deviation)
⑤、Laplace函数
1 //拉普拉斯梯度函数 2 laplace(Image, ImageLaplace4, 'signed', 3, 'n_4') 3 laplace(Image, ImageLaplace8, 'signed', 3, 'n_8') 4 add_image(ImageLaplace4, ImageLaplace4, ImageResult1, 1, 0) 5 add_image(ImageLaplace4, ImageResult1, ImageResult1, 1, 0) 6 add_image(ImageLaplace8, ImageResult1, ImageResult1, 1, 0) 7 mult_image(ImageResult1, ImageResult1, ImageResult, 1, 0) 8 intensity(ImageResult, ImageResult, Value, Deviation)
标签:ImageResult1,Image,Halcon,算法,对焦,ImagePart00,image,mult,ImageResult 来源: https://www.cnblogs.com/ybqjymy/p/15166088.html