编程语言
首页 > 编程语言> > 16 机器学习 - CF协同过滤算法补充

16 机器学习 - CF协同过滤算法补充

作者:互联网

计算距离的数学公式

欧几里德距离(Euclidean Distance)

最初用于计算欧几里德空间中两个点的距离,假设 x,y 是 n 维空间的两个点,它们之间的欧几里德距离是:
在这里插入图片描述

可以看出,当 n=2 时,欧几里德距离就是平面上两个点的距离。
当用欧几里德距离表示相似度,一般采用以下公式进行转换:距离越小,相似度越大
在这里插入图片描述

皮尔逊相关系数(Pearson Correlation Coefficient)

皮尔逊相关系数一般用于计算两个定距变量间联系的紧密程度,它的取值在 [-1,+1] 之间。
在这里插入图片描述
sx, sy是 x 和 y 的样品标准偏差。
Cosine 相似度(Cosine Similarity)
Cosine 相似度被广泛应用于计算文档数据的相似度:
在这里插入图片描述

Tanimoto 系数(Tanimoto Coefficient)

Tanimoto 系数也称为 Jaccard 系数,是 Cosine 相似度的扩展,也多用于计算文档数据的相似度:
在这里插入图片描述

相似邻居的计算

介绍完相似度的计算方法,下面我们看看如何根据相似度找到用户-物品的邻居,常用的挑选邻居的原则可以分为两类:

1.固定数量的邻居:K-neighborhoods 或者 Fix-size neighborhoods

不论邻居的“远近”,只取最近的 K 个,作为其邻居。
如下图中的 A,假设要计算点 1 的 5- 邻居,那么根据点之间的距离,我们取最近的 5 个点,分别是点 2,点 3,点 4,点 7 和点 5。但很明显我们可以看出,这种方法对于孤立点的计算效果不好,因为要取固定个数的邻居,当它附近没有足够多比较相似的点,就被迫取一些不太相似的点作为邻居,这样就影响了邻居相似的程度,比如下图中,点 1 和点 5 其实并不是很相似。

2.基于相似度门槛的邻居:Threshold-based neighborhoods

与计算固定数量的邻居的原则不同,基于相似度门槛的邻居计算是对邻居的远近进行最大值的限制,落在以当前点为中心,距离为 K 的区域中的所有点都作为当前点的邻居,这种方法计算得到的邻居个数不确定,但相似度不会出现较大的误差。
如下图中的 B,从点 1 出发,计算相似度在 K 内的邻居,得到点 2,点 3,点 4 和点 7,这种方法计算出的邻居的相似度程度比前一种优,尤其是对孤立点的处理
相似邻居计算示意图

协同过滤算法常见问题

虽然协同过滤是一种比较省事的推荐方法,但在某些场合下并不如利用元信息推荐好用。协同过滤会遇到的两个常见问题是

  1. 稀疏性问题——因用户做出评价过少,导致算出的相关系数不准确
  2. 冷启动问题——因物品获得评价过少,导致无“权”进入推荐列表中

都是样本量太少导致的(上例中也使用了至少 200 的有效重叠评价数)。
因此在对于新用户和新物品进行推荐时,使用一些更一般性的方法效果可能会更好。比如:

  • 给新用户推荐更多平均得分超高的电影;
  • 把新电影推荐给喜欢类似电影(如具有相同导演或演员)的人。
    后面这种做法需要维护一个物品分类表,这个表既可以是基于物品元信息划分的,也可是通过聚类得到的。

标签:邻居,计算,16,欧几里德,CF,距离,算法,Cosine,相似
来源: https://blog.51cto.com/u_15294985/3007709