标签:Node packetLength LEACH min ctrPacketLength ce matlab 分簇 Eelec
文章目录
- 一、理论基础
- 二、方法描述
-
- 1、节点分簇
- 2、节点能量消耗
- 三、仿真分析
-
- 1、节点分簇
- 2、节点能量消耗
- 四、参考文献
一、理论基础
LEACH(Low-Energy Adaptive Clustering Hierarchy)是由Wendi Rabiner Heinzelman、Anantha Chandrakasan和Hari Balakrishnan三人于2000年提出的一种无线传感器网络路由协议,它利用簇头的随机轮换在网络中的传感器之间均匀地分配能量负载。LEACH使用局部协调来实现动态网络的可伸缩性和健壮性,并将数据融合纳入路由协议中,以减少必须传输到基站的信息量。仿真结果表明,与传统的路由协议相比,LEACH协议的能耗降低了8倍。此外,LEACH能够在传感器中均匀地分配能量耗散,使网络的有效系统的生命周期延长一倍。
二、方法描述1、节点分簇
2、节点能量消耗
三、仿真分析节点分布如图1所示。
图1 100节点随机分布图
1、节点分簇
仿真程序如下:
%% 清空环境变量 clear; clc; %% 初始化参数 xm = 100; % x轴范围 ym = 100; % y轴范围 sink.x = 50; % 基站x轴 50 sink.y = 200; % 基站y轴 200 n = 100; % 节点总数 p = 0.05; % 簇头概率 Eelec = 50*10^(-9); Efs=10*10^(-12); Emp=0.0013*10^(-12); ED=5*10^(-9); d0 = sqrt(Efs/Emp); packetLength = 4000; ctrPacketLength = 100; rmax = 2000; figure; %% 节点随机分布 for i = 1:n Node(i).xd = rand(1,1)*xm; Node(i).yd = rand(1,1)*ym; % 随机产生100个点 Node(i).type = 'N'; % 进行选举簇头前先将所有节点设为普通节点 Node(i).E = 0.5; % 初始能量 Node(i).CH = 0; % 保存普通节点的簇头节点,-1代表自己是簇头 Node(i).d = sqrt((Node(i).xd-sink.x)^2+(Node(i).yd-sink.y)^2); Node(i).G = 0; % 候选集标志 plot(Node(i).xd, Node(i).yd, 'o', sink.x, sink.y, 'p', 'LineWidth', 2); hold on; end legend('节点', '基站'); xlabel 'x'; ylabel 'y'; title 'WSN分布图'; %% alive = zeros(rmax, 1); % 每轮存活节点数 re = zeros(rmax, 1); % 每轮节点总能量 ce = zeros(rmax, 1); % 每轮节点消耗总能量 for r = 1:10 figure; if mod(r, round(1/p)) == 0 for i = 1:n Node(i).G=0; end end for i = 1:n if Node(i).E > 0 Node(i).type = 'N'; Node(i).CH = 0; alive(r) = alive(r)+1; re(r) = re(r)+Node(i).E; end end if alive(r) == 0 break; end %% 簇头选举 cluster = 0; for i = 1:n if Node(i).E > 0 temp_rand = rand; if Node(i).G <= 0 && temp_rand < p/(1-p*mod(r,round(1/p))) Node(i).type = 'C'; % 节点类型为簇头 Node(i).G = 1; cluster = cluster + 1; % 簇头节点存入C数组 C(cluster).xd = Node(i).xd; C(cluster).yd = Node(i).yd; C(cluster).dist = Node(i).d; C(cluster).id = i; plot(C(cluster).xd, C(cluster).xd, '*'); text(Node(i).xd, Node(i).yd, num2str(i)); hold on; CH = C; Node(i).CH = -1; % 广播自成为簇头 distanceBroad = sqrt(xm*xm+ym*ym); if distanceBroad > d0 Node(i).E = Node(i).E- (Eelec*ctrPacketLength + Emp*ctrPacketLength*distanceBroad^4); ce(r) = ce(r)+Eelec*ctrPacketLength + Emp*ctrPacketLength*distanceBroad^4; else Node(i).E = Node(i).E- (Eelec*ctrPacketLength + Efs*ctrPacketLength*distanceBroad^2); ce(r) = ce(r)+Eelec*ctrPacketLength + Efs*ctrPacketLength*distanceBroad^2; end % 簇头自己发送数据包能量消耗 if Node(i).d > d0 Node(i).E = Node(i).E- ((Eelec+ED)*packetLength+Emp*packetLength*Node(i).d^4); ce(r) = ce(r)+(Eelec+ED)*packetLength+Emp*packetLength*Node(i).d^4; else Node(i).E = Node(i).E- ((Eelec+ED)*packetLength+Efs*packetLength*Node(i).d^2); ce(r) = ce(r)+(Eelec+ED)*packetLength+Efs*packetLength*Node(i).d^2; end end end end % 判断最近的簇头结点,如何去判断,采用距离矩阵 for i = 1:n if Node(i).type == 'N' && Node(i).E > 0 if cluster > 0 Length = zeros(cluster, 1); for c = 1:cluster Length(c) = sqrt((Node(i).xd - C(c).xd)^2+(Node(i).yd-C(c).yd)^2); end [min_dis, min_dis_cluster] = min(Length); % 找到距离簇头最近的簇成员节点 plot(Node(i).xd, Node(i).yd, 'o'); text(Node(i).xd, Node(i).yd, num2str(i)); hold on; plot([Node(i).xd; Node(C(min_dis_cluster).id).xd], [Node(i).yd; Node(C(min_dis_cluster).id).yd]); hold on; % 接收簇头发来的广播的消耗 Node(i).E = Node(i).E - Eelec*ctrPacketLength; ce(r) = ce(r)+Eelec*ctrPacketLength; % 加入这个簇,并发送数据给簇头 if min_dis < d0 Node(i).E = Node(i).E-(Eelec*(ctrPacketLength+packetLength)+Efs*(ctrPacketLength+packetLength)*min_dis^2); ce(r) = ce(r)+Eelec*(ctrPacketLength+packetLength)+Efs*(ctrPacketLength+packetLength)*min_dis^2; else Node(i).E = Node(i).E-(Eelec*(ctrPacketLength+packetLength)+Emp*(ctrPacketLength+packetLength)*min_dis^4); ce(r) = ce(r)+Eelec*(ctrPacketLength+packetLength)+Emp*(ctrPacketLength+packetLength)*min_dis^4; end Node(i).CH = C(min_dis_cluster).id; % 簇头接收簇成员数据包消耗能量,接收加入消息和确认加入消息 if min_dis > 0 Node(C(min_dis_cluster).id).E = Node(C(min_dis_cluster).id).E - (Eelec+ED)*packetLength; %接受簇成员发来的数据包 Node(C(min_dis_cluster).id).E = Node(C(min_dis_cluster).id).E - Eelec*ctrPacketLength; %接收加入消息 ce(r) = ce(r)+(Eelec+ED)*packetLength+Eelec*ctrPacketLength; if min_dis > d0 % 簇头向簇成员发送确认加入的消息 Node(C(min_dis_cluster).id).E = Node(C(min_dis_cluster).id).E - (Eelec*ctrPacketLength+Emp*ctrPacketLength*min_dis^4); ce(r) = ce(r)+Eelec*ctrPacketLength+Emp*ctrPacketLength*min_dis^4; else Node(C(min_dis_cluster).id).E = Node(C(min_dis_cluster).id).E - (Eelec*ctrPacketLength+Efs*ctrPacketLength*min_dis^2); ce(r) = ce(r)+Eelec*ctrPacketLength+Efs*ctrPacketLength*min_dis^2; end end else if Node(i).d < d0 Node(i).E = Node(i).E-(Eelec*packetLength+Efs*packetLength*Node(i).d^2); ce(r) = ce(r)+Eelec*packetLength+Efs*packetLength*Node(i).d^2; else Node(i).E = Node(i).E-(Eelec*packetLength+Emp*packetLength*Node(i).d^4); ce(r) = ce(r)+Eelec*packetLength+Emp*packetLength*Node(i).d^4; end end end end clear C; end
随机选取4幅分簇图,如图2~5所示。
图2~5 LEACH分簇图
2、节点能量消耗
代码如下:
%% 清空环境变量 clear; clc; %% 初始化参数 xm = 100; % x轴范围 ym = 100; % y轴范围 sink.x = 50; % 基站x轴 50 sink.y = 200; % 基站y轴 200 n = 100; % 节点总数 p = 0.05; % 簇头概率 Eelec = 50*10^(-9); Efs=10*10^(-12); Emp=0.0013*10^(-12); ED=5*10^(-9); d0 = sqrt(Efs/Emp); packetLength = 4000; ctrPacketLength = 100; rmax = 1500; figure; %% 节点随机分布 for i = 1:n Node(i).xd = rand(1,1)*xm; Node(i).yd = rand(1,1)*ym; % 随机产生100个点 Node(i).type = 'N'; % 进行选举簇头前先将所有节点设为普通节点 Node(i).E = 0.5; % 初始能量 Node(i).CH = 0; % 保存普通节点的簇头节点,-1代表自己是簇头 Node(i).d = sqrt((Node(i).xd-sink.x)^2+(Node(i).yd-sink.y)^2); Node(i).G = 0; % 候选集标志 plot(Node(i).xd, Node(i).yd, 'o', sink.x, sink.y, 'p', 'LineWidth', 2); hold on; end legend('节点', '基站'); xlabel 'x'; ylabel 'y'; title 'WSN分布图'; %% alive = zeros(rmax, 1); % 每轮存活节点数 re = zeros(rmax, 1); % 每轮节点总能量 ce = zeros(rmax, 1); % 每轮节点消耗总能量 for r = 1:rmax if mod(r, round(1/p)) == 0 for i = 1:n Node(i).G=0; end end for i = 1:n if Node(i).E > 0 Node(i).type = 'N'; Node(i).CH = 0; alive(r) = alive(r)+1; re(r) = re(r)+Node(i).E; end end if alive(r) == 0 break; end %% 簇头选举 cluster = 0; for i = 1:n if Node(i).E > 0 temp_rand = rand; if Node(i).G <= 0 && temp_rand < p/(1-p*mod(r,round(1/p))) Node(i).type = 'C'; % 节点类型为簇头 Node(i).G = 1; cluster = cluster + 1; % 簇头节点存入C数组 C(cluster).xd = Node(i).xd; C(cluster).yd = Node(i).yd; C(cluster).dist = Node(i).d; C(cluster).id = i; CH = C; Node(i).CH = -1; % 广播自成为簇头 distanceBroad = sqrt(xm*xm+ym*ym); if distanceBroad > d0 Node(i).E = Node(i).E- (Eelec*ctrPacketLength + Emp*ctrPacketLength*distanceBroad^4); ce(r) = ce(r)+Eelec*ctrPacketLength + Emp*ctrPacketLength*distanceBroad^4; else Node(i).E = Node(i).E- (Eelec*ctrPacketLength + Efs*ctrPacketLength*distanceBroad^2); ce(r) = ce(r)+Eelec*ctrPacketLength + Efs*ctrPacketLength*distanceBroad^2; end % 簇头自己发送数据包能量消耗 if Node(i).d > d0 Node(i).E = Node(i).E- ((Eelec+ED)*packetLength+Emp*packetLength*Node(i).d^4); ce(r) = ce(r)+(Eelec+ED)*packetLength+Emp*packetLength*Node(i).d^4; else Node(i).E = Node(i).E- ((Eelec+ED)*packetLength+Efs*packetLength*Node(i).d^2); ce(r) = ce(r)+(Eelec+ED)*packetLength+Efs*packetLength*Node(i).d^2; end end end end % 判断最近的簇头结点,如何去判断,采用距离矩阵 for i = 1:n if Node(i).type == 'N' && Node(i).E > 0 if cluster > 0 Length = zeros(cluster, 1); for c = 1:cluster Length(c) = sqrt((Node(i).xd - C(c).xd)^2+(Node(i).yd-C(c).yd)^2); end [min_dis, min_dis_cluster] = min(Length); % 找到距离簇头最近的簇成员节点 % 接收簇头发来的广播的消耗 Node(i).E = Node(i).E - Eelec*ctrPacketLength; ce(r) = ce(r)+Eelec*ctrPacketLength; % 加入这个簇,并发送数据给簇头 if min_dis < d0 Node(i).E = Node(i).E-(Eelec*(ctrPacketLength+packetLength)+Efs*(ctrPacketLength+packetLength)*min_dis^2); ce(r) = ce(r)+Eelec*(ctrPacketLength+packetLength)+Efs*(ctrPacketLength+packetLength)*min_dis^2; else Node(i).E = Node(i).E-(Eelec*(ctrPacketLength+packetLength)+Emp*(ctrPacketLength+packetLength)*min_dis^4); ce(r) = ce(r)+Eelec*(ctrPacketLength+packetLength)+Emp*(ctrPacketLength+packetLength)*min_dis^4; end Node(i).CH = C(min_dis_cluster).id; % 簇头接收簇成员数据包消耗能量,接收加入消息和确认加入消息 if min_dis > 0 Node(C(min_dis_cluster).id).E = Node(C(min_dis_cluster).id).E - (Eelec+ED)*packetLength; %接受簇成员发来的数据包 Node(C(min_dis_cluster).id).E = Node(C(min_dis_cluster).id).E - Eelec*ctrPacketLength; %接收加入消息 ce(r) = ce(r)+(Eelec+ED)*packetLength+Eelec*ctrPacketLength; if min_dis > d0 % 簇头向簇成员发送确认加入的消息 Node(C(min_dis_cluster).id).E = Node(C(min_dis_cluster).id).E - (Eelec*ctrPacketLength+Emp*ctrPacketLength*min_dis^4); ce(r) = ce(r)+Eelec*ctrPacketLength+Emp*ctrPacketLength*min_dis^4; else Node(C(min_dis_cluster).id).E = Node(C(min_dis_cluster).id).E - (Eelec*ctrPacketLength+Efs*ctrPacketLength*min_dis^2); ce(r) = ce(r)+Eelec*ctrPacketLength+Efs*ctrPacketLength*min_dis^2; end end else % 无簇头选出,直接发送数据包到基站 if Node(i).d < d0 Node(i).E = Node(i).E-(Eelec*packetLength+Efs*packetLength*Node(i).d^2); ce(r) = ce(r)+Eelec*packetLength+Efs*packetLength*Node(i).d^2; else Node(i).E = Node(i).E-(Eelec*packetLength+Emp*packetLength*Node(i).d^4); ce(r) = ce(r)+Eelec*packetLength+Emp*packetLength*Node(i).d^4; end end end end clear C; end %% 绘图显示 figure; plot(1:rmax, alive, 'r', 'LineWidth', 2); xlabel '轮数'; ylabel '每轮存活节点数'; figure; plot(1:rmax, re, 'b', 'LineWidth', 2); xlabel '轮数'; ylabel '每轮剩余总能量'; figure; plot(1:rmax, ce, 'm', 'LineWidth', 1); xlabel '轮数'; ylabel '每轮消耗总能量';
每轮节点存活个数如图6所示。
图6 每轮节点存活个数
每轮节点总剩余能量如图7所示。
图7 每轮节点总剩余能量
每轮节点总消耗能量如图8所示。
图8 每轮节点总消耗能量
四、参考文献代码下载或者仿真咨询添加QQ1575304183
[1] kkzhang .LEACH分簇算法实现和能量控制算法实现. 博客园
[2] HEINZELMAN W, CHANDRAKASAN A, BALAKRISHNAN H. Energy- efficient communication protocol for wireless micro- sensor networks[C]/ /Proc of the 33rd Hawaii International Conference on System Sciences. Washington:IEEE Computer Society, 2000:3005- 3014.
[3] 喻小惠,张晶,陶涛,龚力波,黄云明,傅铁威.基于蚁群策略的无线传感器网络能耗均衡分簇算法[J].计算机工程与科学,2019,41(07):1197-1202.
标签:Node,packetLength,LEACH,min,ctrPacketLength,ce,matlab,分簇,Eelec
来源: https://blog.51cto.com/u_15287693/2960378
本站声明:
1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。