首页 > TAG信息列表 > zigzag

protobuf和grpc

一、grpc安装   在安装之前确保已经安装好了c/c++的编译环境(指令:sudo apt install -y build-essential autoconf libtool pkg-config)以及cmake、openssl等工具。   (1)下载grpc git clone https://github.com/grpc/grpc.git cd grpc git submodule update --init   (2)编译安

[atAGC054E]ZigZag Break

结论:(不妨假设$p_{1}<p_{n}$)$\{p_{i}\}$合法当且仅当$\exists 1\le i\le n-1$,使得$p_{1}\ge p_{i}$且$p_{i+1}\ge p_{n}$ 充分性—— 为了方便,在删除一个元素后,$i$和$n$也随之变化(指向原来的元素,若删除$p_{i}$或$p_{n}$会补充说明) 对$\{p_{1},p_{2},...,p_{i}\}$这个子问题不断删

zigzag走线原理及应用

电路板上弯弯扭扭的走线有什么用 往期文章: 一文读懂高速互联的阻抗及反射(上) 一文读懂高速互联的阻抗及反射(中) 前面几篇文章有部分读者反馈太深奥,不好懂,要求来一点轻松易懂的。这不,它来了!本期文章我们来分享近期工作中的一个小故事。 一段奇怪的走线 这一天,工程师小明像往常一样

ZigZag Conversion(C++字形变换)

(1)求出矩阵大小,设置访问反向顺序 class Solution { public: vector<vector<int>> v={{1,0},{-1,1}}; public: string convert(string s, int numRows) { int len=s.length(); if(numRows==1) return s; int col=len/(2*numRows-2); c

2021-04-02:给定一个正方形或者长方形矩阵matrix,实现zigzag打印。[[0,1,2

2021-04-02:给定一个正方形或者长方形矩阵matrix,实现zigzag打印。[[0,1,2],[3,4,5],[6,7,8]]的打印顺序是0,1,3,6,4,2,5,7,8。 福大大 答案2021-04-02: 两个for循环嵌套。外层循环。先遍历第一列,再遍历不包含列号为0的最后一行。每循环一次,修改标志位。内层循环。根据标志位判断,从左

2021-04-02:给定一个正方形或者长方形矩阵matrix,实现zigzag打印。[[0,1,2

2021-04-02:给定一个正方形或者长方形矩阵matrix,实现zigzag打印。[[0,1,2],[3,4,5],[6,7,8]]的打印顺序是0,1,3,6,4,2,5,7,8。 福大大 答案2021-04-02: 两个for循环嵌套。外层循环。先遍历第一列,再遍历不包含列号为0的最后一行。每循环一次,修改标志位。内层循环。根据标志位判断,从左

2021-04-02:给定一个正方形或者长方形矩阵matrix,实现zigzag打印。[[0,1,2

2021-04-02:给定一个正方形或者长方形矩阵matrix,实现zigzag打印。[[0,1,2],[3,4,5],[6,7,8]]的打印顺序是0,1,3,6,4,2,5,7,8。 福大大 答案2021-04-02: 两个for循环嵌套。外层循环。先遍历第一列,再遍历不包含列号为0的最后一行。每循环一次,修改标志位。内层循环。根据标志位判断,从左

LeetCode 6. ZigZag Conversion

The string "PAYPALISHIRING" is written in a zigzag pattern on a given number of rows like this: (you may want to display this pattern in a fixed font for better legibility) P A H N A P L S I I G Y I R And then read line by line: "

281. Zigzag Iterator z字型遍历

Given two 1d vectors, implement an iterator to return their elements alternately.   Example: Input: v1 = [1,2] v2 = [3,4,5,6] Output: [1,3,2,4,5,6] Explanation: By calling next repeatedly until hasNext returns false, the order of elements returned by nex

CF1147F Zigzag Game

题目链接 尝试构造这样一组匹配:满足对于任意两条匹配边 \(a\leftrightarrow b,c\leftrightarrow d\),若存在非匹配边 \(b\leftrightarrow c\) 且 \(w(b,c)<w(a,b)\),则一定有 \(w(c,d)\)。这样我们选择后手Bob,每次沿着匹配边走,一定能获得胜利(若Alice选择升序则令 \(w(i,j)=-w(i,j)\)

【LeetCode】6. ZigZag Conversion

目录题目链接注意点解法测试代码遇到问题小结 题目链接 https://leetcode.com/problems/zigzag-conversion/ 注意点 给定行数可以为1 解法 解法1:找规律。找到每个字符变化前的初始位置与变化后的行数的映射关系。当指定行数为numRows (numRows >1)时,每(numRows -1)*2个连续的字符

1372. Longest ZigZag Path in a Binary Tree

减掉一个分支,否则会超时的。已经走过的路就不再走了。 /** * Definition for a binary tree node. * struct TreeNode { * int val; * TreeNode *left; * TreeNode *right; * TreeNode(int x) : val(x), left(NULL), right(NULL) {} * }; */ class

6. ZigZag Conversion

本题告诉我们,对于sort的重定义函数,应该要写在类外面,否则会报错。 // sort pair bool cmp(const pair<int,int>& a, const pair<int,int>& b) { if (a.first<b.first){ return true; } else if (a.first>b.first){ return false; } els

1104. Path In Zigzag Labelled Binary Tree**

1104. Path In Zigzag Labelled Binary Tree** https://leetcode.com/problems/path-in-zigzag-labelled-binary-tree/ 题目描述 In an infinite binary tree where every node has two children, the nodes are labelled in row order. In the odd numbered rows (ie., the

Zigzag Iterator

Description Given two 1d vectors, implement an iterator to return their elements alternately. Example Example1 Input: v1 = [1, 2] and v2 = [3, 4, 5, 6]Output: [1, 3, 2, 4, 5, 6]Explanation: By calling next repeatedly until hasNext returns false, the

Zigzag Iterator II

Description Follow up Zigzag Iterator: What if you are given k 1d vectors? How well can your code be extended to such cases? The "Zigzag" order is not clearly defined and is ambiguous for k > 2 cases. If "Zigzag" does not look right

6. Z 字形变换_ZigZag Conversion

ZigZag Conversion 将一个给定字符串根据给定的行数,以从上往下、从左到右进行 Z 字形排列。 题目来源:力扣(LeetCode)链接:https://leetcode-cn.com/problems/zigzag-conversion The string “PAYPALISHIRING” is written in a zigzag pattern on a given number of rows like

6. ZigZag Conversion

The string “PAYPALISHIRING” is written in a zigzag pattern on a given number of rows like this: (you may want to display this pattern in a fixed font for better legibility) P A H N A P L S I I G Y I R And then read line by line: “PAHNAPLSI

ZigZag Conversion

题目描述: The string "PAYPALISHIRING" is written in a zigzag pattern on a given number of rows like this: (you may want to display this pattern in a fixed font for better legibility) P A H N A P L S I I G Y I R And then read line by line:

lc6 ZigZag Conversion

lc6 ZigZag Conversion 分成两步, 第一步垂直向下, 1 1 1 1 第二步倾斜向上 1      1  1    1 1  1 1   用nRows个StringBuilder 然后将他们合并即可  1 class Solution { 2 public String convert(String s, int numRows) { 3 if(s.length() < numRows

string leetcode-6.ZigZag

6. ZigZag Conversion 题面 The string "PAYPALISHIRING" is written in a zigzag pattern on a given number of rows like this: (you may want to display this pattern in a fixed font for better legibility) P A H NA P L S I I GY I R And then rea

leetcode-6 ZigZag Conversion

The string "PAYPALISHIRING" is written in a zigzag pattern on a given number of rows like this: (you may want to display this pattern in a fixed font for better legibility) P A H N A P L S I I G Y I R And then read line by line: &quo

【AtCoder2134】ZigZag MST(最小生成树)

【AtCoder2134】ZigZag MST(最小生成树) 题面 洛谷 AtCoder 题解 这题就很鬼畜。。 既然每次连边,连出来的边的权值是递增的,所以拿个线段树xjb维护一下就可以做了。那么意味着只有前面的点集被连在一起之后才可能选择后面的边,因此我们可以强制修改一下边的连接方式,只需要把新加入的点

AT2134 Zigzag MST 最小生成树

正解:最小生成树 解题报告: 先放下传送门QAQ 然后这题,首先可以发现这神奇的连边方式真是令人头大,,,显然要考虑转化掉QAQ 大概看一下可以发现点对的规律是,左边++,交换位置,再仔细想下,就每个点会连上相邻两点,也就相邻两点会通过另外一个点连边 首先可以发现加到后来已经是麻油意

LeetCode刷题笔记--6. ZigZag Conversion-记录考虑不周的算法,悲剧的重写

6. ZigZag Conversion Medium 9022823FavoriteShare The string "PAYPALISHIRING" is written in a zigzag pattern on a given number of rows like this: (you may want to display this pattern in a fixed font for better legibility) P A H N A P L S