首页 > TAG信息列表 > plt
Matplotlib画图常用命令
1. 后处理Epoch结果:代码及图 import sdf_helper as sh import numpy as np import matplotlib.pyplot as plt from matplotlib.ticker import MultipleLocator as ml from matplotlib.ticker import ScalarFormatter as sf import matplotlib.ticker as ticker import matplotlibopencv基本操作
1-1.真彩色 24 位 BMP 图像每存储一个像素点需要几个字节?计算一幅大小为 1024× 768 的图像数据存储需要的字节数(不压缩)。 24位图像储存一个像素需要3个字节 print("一副1024*768的图像需要的字节数为:",1024*768*3) 一副1024*768的图像需要的字节数为: 2359296 1-2. 将灰度为256gdp+weather+air.html
3-2-1 import pandas as pd df=pd.read_csv(r"E:\junior\datasource\gdp\output1\part-r-00000",sep='\t',header=None) df.columns=['大洲名称','总GDP数'] df.head() import matplotlib from matplotlib import pyplot as plt ma反归一化
问题描述:归一化后使用模型进行预测,将预测的结果反归一化为初始的数据规模,预测值与真实值进行画图比较。 1、将特征和标注进行拆分,分别进行归一化 2、特征的归一化 1 from sklearn.preprocessing import MinMaxScaler # 导包 2 data.name = data.columns # 获取列名 3 fPython图像处理丨基于K-Means聚类的图像区域分割
摘要:本篇文章主要讲解基于理论的图像分割方法,通过K-Means聚类算法实现图像分割或颜色分层处理。 本文分享自华为云社区《[Python图像处理] 十九.图像分割之基于K-Means聚类的区域分割》,作者: eastmount。 本篇文章主要讲解基于理论的图像分割方法,通过K-Means聚类算法实现图像分割或matplotlib画折线图
def convert(self, pose_list, output): data_list = self.parse_pose(pose_list) time_z_dic = {} font2 = {'family': 'Times New Roman', 'weight': 'normal', &qmatplotlib 图表组成元素
在一个图像输出窗口中,底层是一个 Figure 实例,我们通常称之为画布,包含了一些可见和不可见的元素。 在画布上作出图形,这些图形是 Axes 实例,Axes 实例几乎包含了我们需要用到的 matplotlib 组成元素,例如坐标轴、刻度、标签、线和标记等。 import matplotlib.pyplot as plt import numPython数据分析易错知识点归纳(四):Matplotlib
四、matplotlib 显示中文标签 plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签 不显示坐标轴刻度 plt.xticks(()) plt.yticks(()) 双Y图 ''' 次坐标轴 ''' x = np.arange(0, 10, 0.1) y1 = 0.05 * x ** 2 y2 = -1 * y1 # 获取figure默认的坐员工离职困扰?来看AI如何解决,基于人力资源分析的 ML 模型构建全方案 ⛵
Python实现PCA(Principal Component Analysis)
1.基本原理 PCA是机器学习和统计学领域一类特征降维算法。由于样本数据往往会有很多的特征,这会带来以下挑战: 样本的维度超过3维则无法可视化; 维度过高可能会存在特征冗余,不利于模型训练,等等; 而PCA的目的就是在降低特征维度的同时,最大程度地保证原始信息的完整。 2.案例 点击查一个好玩的deep learning Demo!
对于生活中的熟悉的动物,我们人脑经过一次扫描,便可以得到该动物的物种!那么机器是如何识别这个图片上的动物是属于哪一物种呢? 本次实验借生活中最常见的猫和狗来探究其原理! 环境准备: tensorflow ,python,一些data 实验预期: 当模型训练完成后,我们可以用该模型去预测一张图片属于哪【实验记录】matplotlib的使用
我现在觉得似乎matplotlib画出来的图更方便,更好看。而其是和ggplot2不一样的绘图的思路,所以我还是蛮想学习一下的。 我必须要有所进步才行。 Figure fig = plt.figure() #没有坐标轴的空的图片 fig ,ax = plt.subplots() #一张图片 #这个一般比较常用 fig ,axs = plt.subplots(Python学习笔记:异常值检测之箱线图
一、介绍 箱线图也称箱须图、箱形图、盒图,用于反映一组或多组连续型定量数据分布的中心位置和散布范围。箱形图包含数学统计量,不仅能够分析不同类别数据各层次水平差异,还能揭示数据间离散程度、异常值、分布差异等等。 1977年,美国著名数学家 John W. Tukey 首先在他的著作 《Explo直方图(不是和条形图一样吗?)
直方图(不是和条形图一样吗?) 由 Freepik 创建的直方图图标 — Flaticon 当我要选择时出现的第一个问题 直方图 呈现数据是“不是条形图吗?”因为如果我们看形状,它们看起来很相似。所以让我们谈谈它。 对我来说,直方图和条形图之间的第一件事是直方图上的“条”/“箱”之间没有间隙。数据科学手把手:碳中和下的二氧化碳排放分析 ⛵
【深度学习】DNN房价预测
前言 我们使用深度学习网络实现波士顿房价预测,深度学习的目的就是寻找一个合适的函数输出我们想要的结果。深度学习实际上是机器学习领域中一个研究方向,深度学习的目标是让机器能够像人一样具有分析学习的能力,能够识别文字、图像、声音等数据。我认为深度学习与机器学习最主要的区常见机器学习方法的优缺点及适用场景:支持向量机(SVM)
支持向量机(SVM) 特点: SVM 想要的就是找到各类样本点到超平面的距离最远,也就是找到最大间隔超平面。其有优美的理论保证和利用核函数对于线性不可分问题的处理技巧,使其常用于数据分类问题(回归问题也可)。 优点: 有严格的数学理论支持,可解释性强,不依靠统计方法,从而简化了通np.squeeze
np.squeeze:从数组的形状中删除维度为 \(1\) 的维度。 np.squeeze(arr, axis) 参数: arr:输入数组 axis:整数或整数元组,用于选择形状中一维维度的子集。 示例: import numpy as np x = np.arange(9).reshape(1, 3, 3) print(x) y = np.squeeze(x) print(y) print(x.shape, y.shap基于python的数学建模---logicstic回归
樱花数据集的Logistic回归 绘制散点图 import matplotlib.pyplot as plt import numpy as np from sklearn.datasets import load_iris iris = load_iris() #获取花卉两列数据集 DD = iris.data X = [x[0] for x in DD] Y = [x[1] for x in DD] plt.scatter(X[:50], Y[:画好坏样本分布图
即是分别画好用户的分数分布图、坏样本的分数分布图,如下图 首先,分数分布图应该使用sns.kdeplot(),2个分布图就将二者放在同一个图上,最后代码如下: import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns import matplotlib as mplmatplotlib.pyplot绘制子图以及子图大小和位置的调整
今天为了把下面的8个子图的图形调的清晰加上大小合适,花费了大概5个多小时的时间,把这段代码记录下来,以防电脑上代码丢失,制图的大小,间距、位置,颜色怎么调整,看里面的注释。很简单的东西,把人能搞疯了。 等于说代码不算字,好吧,为了凑够二百字,我要拼命的努力打字了。其实有些时候明白了一基于python的数学建模---时间序列
JetRail高铁乘客量预测——7种时间序列方法 数据获取:获得2012-2014两年每小时乘客数量 import pandas as pd import numpy as np import matplotlib.pyplot as plt df = pd.read_csv('C:\\Users\\Style\\Desktop\\jetrail.csv', nrows=11856) df.head() print(df.head()) 从209.Matplotlib subplot()函数用法详解
在使用 Matplotlib 绘图时,我们大多数情况下,需要将一张画布划分为若干个子区域,之后,我们就可以在这些区域上绘制不用的图形。在本节,我们将学习如何在同一画布上绘制多个子图。matplotlib.pyplot模块提供了一个 subplot() 函数,它可以均等地划分画布,该函数的参数格式如下: plt.subplot10.Matplotlib subplots()函数详解
matplotlib.pyplot模块提供了一个 subplots() 函数,它的使用方法和 subplot() 函数类似。其不同之处在于,subplots() 既创建了一个包含子图区域的画布,又创建了一个 figure 图形对象,而 subplot() 只是创建一个包含子图区域的画布。subplots 的函数格式如下: fig , ax = plt.subplots(理解 fig,ax = plt.subplots()
fig,ax = plt.subplots() 等价于:fig = plt.figure()ax = fig.add_subplot(1,1,1) 例如:fig, ax = plt.subplots(1,3),其中参数1和3分别代表子图的行数和列数,一共有 1x3 个子图像。函数返回一个figure图像窗口和子图ax的array列表。fig, ax = plt.subplots(1,3,1),最后一个参数1代表第