首页 > TAG信息列表 > Parentheses

QObject::connect: Parentheses expected, signal QAction::triggered in ..

提示信息: QObject::connect: Parentheses expected, signal QAction::triggered in .. QObject::connect: (receiver name: 'MainWindow') 且槽函数未执行。 原因:信号语句中少了括号(猪心大姨),应该写成 connect(openAct,SIGNAL(triggered()),this,SLOT(open())); connect(newAct

20.valid-parentheses 有效的括号

利用stack,括号匹配时pop()。 #include <stack> #include <string> using std::stack; using std::string; class Solution { public: bool isValid(string s) { stack<char> st; char temp; for (char c : s) { if (c =

LeetCode20. Valid Parentheses

题意 序列含有'{}', '()', '[]', 判断其是否有效 方法 stack 代码 bool isValid(string s) { int N = s.size(); if (N & 1) return false; stack<char> st; for (int i = 0; i < N; i++) { if (s[i] == '('

leetcode 241. Different Ways to Add Parentheses 为运算表达式设计优先级(中等)

一、题目大意 标签: 分治 https://leetcode.cn/problems/different-ways-to-add-parentheses 给你一个由数字和运算符组成的字符串 expression ,按不同优先级组合数字和运算符,计算并返回所有可能组合的结果。你可以 按任意顺序 返回答案。 生成的测试用例满足其对应输出值符合 32

[LeetCode] 2116. Check if a Parentheses String Can Be Valid

A parentheses string is a non-empty string consisting only of '(' and ')'. It is valid if any of the following conditions is true: It is (). It can be written as AB (A concatenated with B), where A and B are valid parentheses strings.

parenthesis 相关题目

2116. Check if a Parentheses String Can Be Valid Medium 54219Add to ListShare A parentheses string is a non-empty string consisting only of '(' and ')'. It is valid if any of the following conditions is true: It is (). It can be wr

判断括号是否匹配–python

例子: valid_parentheses('i(hi)()') == True valid_parentheses('hi())(') == False valid_parentheses('') == True valid_parentheses('())(())') == False 实现: 方法一: def valid_parentheses(string): cnt = 0 for char i

LeetCode 1541. Minimum Insertions to Balance a Parentheses String

原题链接在这里:https://leetcode.com/problems/minimum-insertions-to-balance-a-parentheses-string/ 题目: Given a parentheses string s containing only the characters '(' and ')'. A parentheses string is balanced if: Any left parenthesis '(&#

22. Generate Parentheses

My back tracking solution: class Solution { List<String> res = new ArrayList<>(); public List<String> generateParenthesis(int n) { backTracking(n, 0 , 0, new StringBuilder(), res); return res; } pri

856. Score of Parentheses

class Solution { public int scoreOfParentheses(String s) { Stack<Integer> st = new Stack<>(); int score = 0; for(int i = 0; i < s.length(); i++){ char ch = s.charAt(i); if(ch == '(�

301. Remove Invalid Parentheses

Just use BFS to solve this problem: 1. put the s to queue 2. if s is not a valid string, then remove a '(' or ')', and then put to the queue. 3. once find valid strings, return. class Solution { public List<String> removeInv

[leetcode] 22. Generate Parentheses

题目 Given n pairs of parentheses, write a function to generate all combinations of well-formed parentheses. Example 1: Input: n = 3 Output: ["((()))","(()())","(())()","()(())","()()()"] Example 2: Input:

leetcode :[22. 括号生成](https://leetcode-cn.com/problems/generate-parentheses/)

# leetcode :[22. 括号生成](https://leetcode-cn.com/problems/generate-parentheses/) 数字 `n` 代表生成括号的对数,请你设计一个函数,用于能够生成所有可能的并且 **有效的** 括号组合。 **示例 1:** ``` 输入:n = 3 输出:["((()))","(()())","(())()","()(())","()()()"

22. Generate Parentheses

This problem is a typical backtracking solution problem, we need a recursive method as helper, the following is my first solution, which is not very good, because the quick conditions are too many. private List<String> res = new ArrayList<>(

1541. Minimum Insertions to Balance a Parentheses String

Parentheses的题,首先想到stack,思路如下: 1. If get a left parentheses, if the stack size is odd number, that means, one right parentheses is missing, so result plus one, and pop the missing right parentheses. And then, push two right parentheses to stack, that m

1614. Maximum Nesting Depth of the Parentheses

这道题就是921的变种,话不多说: public int maxDepth(String s) { int count = 0; int max = 0; for (char c : s.toCharArray()) { if (c == '(') { count++; max = Math.max(max, count);

1249. Minimum Remove to Make Valid Parentheses

For this problem, if you can remember, always push the index of '(', the problem can be solved easily. The solution is: 1. if meet a '(', push the index of it to the stack. 2. if meet a ')', check whether stack is empty, if y

20. Valid Parentheses

这道题是括号题,这种括号题如果是一种括号,就用一个int做stack就行,但是如果是多种括号,用int就烦琐了,一定要用Stack,下面是我的算法,时间复杂度就是O(n). 我把每类括号的做括号和右括号放在map中,如果是左括号就push到stack,如果是右括号,就pop stack,map中对应的value是不是pop出来的值,如

921. Minimum Add to Make Parentheses Valid

这道题是典型的括号题,一般来说,括号题用stack做,但是这道题因为太简单了,连stack都不用, 就用int就好了,时间复杂度O(n)。 public int minAddToMakeValid(String s) { int count = 0; int res = 0; for(int i=0;i<s.length();i++){ char c =

[Leetcode 22]生成括号generate parentheses

题目 给定括号对数n,生成所有可能的标准括号结果* *指不能)( https://leetcode.com/problems/generate-parentheses/ Given n pairs of parentheses, write a function to generate all combinations of well-formed parentheses.   Example 1: Input: n = 3 Output: ["((()))","

leetcode 22. Generate Parentheses (backtracking)

class Solution { public: vector<string> r; vector<string> generateParenthesis(int n) { string s = ""; h(s, n, n); return r; } void h(string s, int left, int right) { if(left == 0 &

LeetCode 20. 有效的括号(Valid Parentheses)

20. 有效的括号 给定一个只包括 '(',')','{','}','[',']' 的字符串 s ,判断字符串是否有效。 有效字符串需满足: 左括号必须用相同类型的右括号闭合。 左括号必须以正确的顺序闭合。 Given a string s containing just the characters '(', ')', '{&#

[LeetCode] 1190. Reverse Substrings Between Each Pair of Parentheses 反转每对括号间的子串

You are given a string s that consists of lower case English letters and brackets. Reverse the strings in each pair of matching parentheses, starting from the innermost one. Your result should not contain any brackets. Example 1: Input: s = "(abcd)&q

LeetCode-020-有效的括号

有效的括号 题目描述:给定一个只包括 '(',')','{','}','[',']' 的字符串 s ,判断字符串是否有效。 有效字符串需满足: 左括号必须用相同类型的右括号闭合。 左括号必须以正确的顺序闭合。 示例说明请见LeetCode官网。 来源:力扣(LeetCode) 链接:https://leetcode-cn.com/problems/valid-paren

算法:22. Generate Parentheses生成配对括号

22. Generate Parentheses Given n pairs of parentheses, write a function to generate all combinations of well-formed parentheses. Example 1: Input: n = 3 Output: ["((()))","(()())","(())()","()(())","()()()"