首页 > TAG信息列表 > MIM
UOJ #750. -【UNR #6】小火车(meet-in-the-middle+抽屉原理)
考虑性质 \(2^n>p\)。显然根据抽屉原理必然存在两个子集和 \(\bmod p\) 相等。找出这两个子集然后相减就是答案。 朴素的做总共需要 check \(3^n\) 或者 \(4^n\) 对子集,取决于实现方法,就算 mim 也只能开个根号,无法通过。因此我们肯定不能从这个角度来思考。瞎随机可以拿到 60 分。UOJ #750. -【UNR #6】小火车(meet-in-the-middle+抽屉原理)
考虑性质 \(2^n>p\)。显然根据抽屉原理必然存在两个子集和 \(\bmod p\) 相等。找出这两个子集然后相减就是答案。 朴素的做总共需要 check \(3^n\) 或者 \(4^n\) 对子集,取决于实现方法,就算 mim 也只能开个根号,无法通过。因此我们肯定不能从这个角度来思考。瞎随机可以拿到 60 分。