首页 > TAG信息列表 > CNNS
【ARXIV2205】EdgeViTs: Competing Light-weight CNNs on Mobile Devices with Vision Transformers
【ARXIV2205】EdgeViTs: Competing Light-weight CNNs on Mobile Devices with Vision Transformers 91/100 发布文章 gaopursuit 未选择文件 【ARXIV2205】EdgeViTs: Competing Light-weight CNNs on Mobile Devices with Vision Transformers 论文:https://arxiv.org/abs/2205.计算机视觉CV中的Transformer
在计算机视觉领域,CNN自2012年以来已经成为视觉任务的主导模型。随着出现了越来越高效的结构,计算机视觉和自然语言处理越来越收敛到一起,使用Transformer来完成视觉任务成为了一个新的研究方向,以降低结构的复杂性,探索可扩展性和训练效率。 视觉应用 虽然Transformer结构在NLP领域[Transformer]Is it Time to Replace CNNs with Transformers for Medical Images?
医学图像中Transformer可以取代CNN了吗? AbstractSection II Related WorkSection III MethodsSection IV ExperimentsAre random initialized transformers useful?Does pretraining transformers on ImageNet work in the medical domain?Do transformers benefit from se《PWC-Net:CNNs for Optical Flow Using Pyramid,Warping,and Cost Volume》论文笔记
参考代码(official):PWC-Net 参考代码(pytorch convert):pytorch-pwc 1. 概述 导读:这篇文章给出了一种使用CNN网络实现光流估计的方法,在该方法中采用了经典的特征金字塔结构作为特征提取网络。之后在金字塔的某个层级上使用上一级的光流作为warp引导,第二幅图像的特征将被warp。进车道线-论文阅读: Learning Lightweight Lane Detection CNNs by Self Attention Distillation
ICCV2019 code: https://github.com/cardwing/Codes-for-Lane-Detection paper: https://arxiv.org/abs/1908.00821 Abstract present a novel knowledge distillation approach, i.e., Self Attention Distillation (SAD), which allows a model to learn from itself a42028: Assignment 2 – Autumn
42028: Assignment 2 – Autumn 2019 Page 1 of 4Faculty of Engineering and Information TechnologySchool of Software42028: Deep Learning and Convolutional Neural NetworksAutumn 2019ASSIGNMENT-2 SPECIFICATIONDue date Friday 11:59pm, 31 May 2019Demonstrations OAPPROXIMATING CNNS WITH BAG-OF-LOCALFEATURES MODELS WORKS SURPRISINGLY WELL ON IMAGENET 论文笔记
摘要 深度神经网络(DNN)在许多复杂的感知任务中表现出色,但众所周知,很难理解他们如何做出决策。我们在此介绍ImageNet上的高性能DNN架构,其决策更容易解释。我们的模型是ResNet-50架构的一个名为BagNet的简单变体,它根据出现的情况对图像进行分类小的局部图像特征而不考虑它们的空