首页 > TAG信息列表 > Adapting
TENER: Adapting Transformer Encoder for Named Entity Recognition
论文地址:https://arxiv.org/pdf/1911.04474.pdf 代码地址:GitHub - fastnlp/TENER: Codes for "TENER: Adapting Transformer Encoder for Named Entity Recognition" Transformer编码器用于命名实体识别。来自复旦大学邱锡鹏团队。搭建目标检测模型之Harmonizing Transferability and Discriminability for Adapting Object Detectors
搭建环境准备数据集官方数据集PASCAL_VOC 07+12 and Clipart 预训练模型训练模型测试模型训练结果 搭建环境 克隆项目HTCN git clone git://github.com/xiangxiangtao/HTCN.git 主要环境 python=3.6.9pytorch=1.0cuda=10.2 其他环境参考fasterrcnn所需环境 编译 cd论文解读- nnU-Net: Self-adapting Framework for U-Net-Based Medical Image Segmentation(附实现教程)
本篇主要解读论文 “nnU-Net: Self-adapting Framework for U-Net-Based Medical Image Segmentation” == nnU-Net:基于U-Net的自适应医学图像分割框架。 实现见本专栏下其他博文。直达链接