首页 > TAG信息列表 > 青蕈
「loj - 2554」青蕈领主
link。 首先如果 \(L_n \neq n\) 则无解,以下默认 \(L_n = n\)。 记 \(l_i = i - L_i + 1\),即最长连续段的左端点。 由一些基本常识,连续段的交、并、差仍是连续段;这可以推出所有 \([l_i, i]\) 互相包含或相离(如果不满足,则无解)。 建出树形结构:根为 \([1, n]\);对于 \([l_i, i]\),如Loj #2554. 「CTSC2018」青蕈领主
Loj #2554. 「CTSC2018」青蕈领主 题目描述 “也许,我的生命也已经如同风中残烛了吧。”小绿如是说。 小绿同学因为微积分这门课,对“连续”这一概念产生了浓厚的兴趣。小绿打算把连续的概念放到由整数构成的序列上,他定义一个长度为 \(m\) 的整数序列是连续的,当且仅当这个序列中的[分治FFT]「CTSC2018」青蕈领主
题目梗概 定义一个序列是连续的,当且仅当这个序列的最大值-最小值不超过序列长度-1. 现在有一个长度为\(n\)的排列,给出以每个位置为右端点的最长连续区间的长度,求满足的排列的方案数. 解题思路 如果\(a[n]!=n\)且有区间相交显然无解. 那么我们可以根据区间的包含关系建出一棵以\(