其他分享
首页 > 其他分享> > 用Matplotlib画两张花里胡哨的图

用Matplotlib画两张花里胡哨的图

作者:互联网

作者:小小明

今天要画两张图,分别是:

png

png

代码逻辑较为复杂,这次只展示代码。

导包

import matplotlib.pyplot as plt
import matplotlib as mpl
import numpy as np
import pandas as pd
# 解决中文显示问题
mpl.rcParams['font.sans-serif'] = ['SimHei']
mpl.rcParams['axes.unicode_minus'] = False

数据读取

excel = pd.ExcelFile("旅游数据.xlsx")
df_2019 = pd.read_excel(excel, sheet_name=0)
df_2020 = pd.read_excel(excel, sheet_name=1)
df_2019["年份"] = 2019
df_2020["年份"] = 2020
display(df_2019.head())
df_2020['指标名称'].replace('兵团', '新疆兵团', inplace=True)
df_2020.tail()
指标名称代码本季组织人次数本季接待人次数本季组织人天数本季接待人天数年份
0北京11229139811223484156436540452019
1天津21108300411033298931510575982019
2河北381344634379319912937509162019
3山西4587867555379206668222186792019
4内蒙古51156481868614615796404262019
指标名称代码本季组织人次数本季接待人次数本季组织人天数本季接待人天数年份
27甘肃288307627911133133644212020
28青海29559683362765130528682020
29宁夏30471342385478404355212020
30新疆31384742007974410334742020
31新疆兵团32257591800549957398392020

第一张图

plt.style.use('fivethirtyeight')
plt.figure(figsize=(20, 14))
plt.subplot(2, 1, 1)
plt.title("2019与2020年本季组织人次数前十的对比", fontsize=20)
t1 = (df_2019[["指标名称", "本季组织人次数"]]
      .sort_values("本季组织人次数", ascending=False)
      .head(10)
      )
t2 = (df_2020[["指标名称", "本季组织人次数"]]
      .sort_values("本季组织人次数", ascending=False)
      .head(10)
      )
plt.plot(range(10), t1['本季组织人次数'], linewidth=2,
         label='2019', marker='o', markersize=8)
plt.plot(range(10), t2['本季组织人次数'], linewidth=2,
         label='2020', marker='s', markersize=8)
plt.fill_between(range(10), t1['本季组织人次数'], t2['本季组织人次数'],
                 color="gray", alpha=0.2, label="area")
plt.legend(['2019', '2020'], fontsize=20)
plt.grid(b=True)
for x, (city, y) in enumerate(t1[["指标名称", "本季组织人次数"]].values):
    plt.text(x, y, f"{city}:\n{y/10000:.2f}万", fontsize=15,
             horizontalalignment='center', verticalalignment='center')
for x, (city, y) in enumerate(t2[["指标名称", "本季组织人次数"]].values):
    plt.text(x, y, f"{city}:\n{y/10000:.2f}万", fontsize=15,
             horizontalalignment='center', verticalalignment='center')
plt.xticks(range(10), [f"第{i}名" for i in range(1, 11)], fontsize=15)
plt.yticks(range(0, 6500000, 500000), [
           f"{i//10000}万" for i in range(0, 6500000, 500000)], fontsize=15)

plt.subplot(2, 2, 3)
plt.title("2019与2020年四座城市的本季组织人次数对比", fontsize=20)
t1 = df_2019.loc[df_2019["指标名称"].isin(["北京", "天津", "上海", "重庆"]), [
    "指标名称", "本季组织人次数"]]
t2 = df_2020.loc[df_2020["指标名称"].isin(["北京", "天津", "上海", "重庆"]), [
    "指标名称", "本季组织人次数"]]
index = np.arange(4)
plt.bar(index, t1['本季组织人次数'], width=0.4, label='2019')
plt.bar(index+0.4, t2['本季组织人次数'], width=0.4, label='2020')
cutoff_postion = t1["本季组织人次数"].reset_index(
    drop=True).sort_values(ascending=False).index[:2]
x, y = cutoff_postion[0], t1["本季组织人次数"].iat[cutoff_postion[1]]
plt.plot(np.array([-0.2, -0.1, 0.1, 0.2])+x,
         np.array([0, 1, -1, 0])*y*0.04+y, color="white")

plt.legend(fontsize=15)
plt.grid(b=True, axis='y')
plt.xticks(index+0.2, t1['指标名称'], fontsize=15)
plt.yticks(range(0, 4000000, 500000), [
           f"{i//10000}万" for i in range(0, 4000000, 500000)], fontsize=15)
for x, (y1, y2) in enumerate(zip(t1["本季组织人次数"], t2["本季组织人次数"])):
    plt.text(x, y1, f"{y1/10000:.2f}万", verticalalignment='bottom',
             horizontalalignment='center', fontsize=15)
    plt.text(x+0.4, y2, f"{y2/10000:.2f}万", verticalalignment='bottom',
             horizontalalignment='center', fontsize=15)

plt.subplot(2, 2, 4)
plt.title("2019与2020年四座城市的本季接待人次数对比", fontsize=20)
t1 = df_2019.loc[df_2019["指标名称"].isin(["北京", "天津", "上海", "重庆"]), [
    "指标名称", "本季接待人次数"]]
t2 = df_2020.loc[df_2020["指标名称"].isin(["北京", "天津", "上海", "重庆"]), [
    "指标名称", "本季接待人次数"]]
index = np.arange(4)
plt.bar(index, t1['本季接待人次数'], width=0.4, label='2019')
plt.bar(index+0.4, t2['本季接待人次数'], width=0.4, label='2020')
cutoff_postion = t1["本季接待人次数"].reset_index(
    drop=True).sort_values(ascending=False).index[:2]
x, y = cutoff_postion[0], t1["本季接待人次数"].iat[cutoff_postion[1]]
plt.plot(np.array([-0.2, -0.1, 0.1, 0.2])+x,
         np.array([0, 1, -1, 0])*y*0.04+y, color="white")

plt.legend(fontsize=15)
plt.grid(b=True, axis='y')
plt.xticks(index+0.2, t1['指标名称'], fontsize=15)
plt.yticks(range(0, 3000000, 500000), [
           f"{i//10000}万" for i in range(0, 3000000, 500000)], fontsize=15)
for x, (y1, y2) in enumerate(zip(t1["本季接待人次数"], t2["本季接待人次数"])):
    plt.text(x, y1, f"{y1/10000:.2f}万", verticalalignment='bottom',
             horizontalalignment='center', fontsize=15)
    plt.text(x+0.4, y2, f"{y2/10000:.2f}万", verticalalignment='bottom',
             horizontalalignment='center', fontsize=15)
plt.subplots_adjust(wspace=0.1, hspace=0.15)
plt.show()

png

第二张图

plt.style.use('fivethirtyeight')
plt.figure(figsize=(20, 20))
plt.subplot(3, 2, 1)
df_tmp = pd.concat([df_2019, df_2020]).groupby("年份").sum().drop(columns="代码").T
plt.title("四项指标总和年度对比", fontsize=15)
index = np.arange(4)
plt.bar(index, df_tmp[2019], width=0.4, label='2019')
plt.bar(index+0.4, df_tmp[2020], width=0.4, label='2020')
plt.plot(index+0.4, df_tmp[2020], linewidth=2, color='orange')
plt.legend(title="年份")
plt.grid(b=True)
for x, (y1, y2) in enumerate(df_tmp.values):
    plt.text(x, y1, f"{y1/1e4:.1f}万", verticalalignment='bottom',
             horizontalalignment='center')
    plt.text(x+0.4, y2, f"{y2/1e4:.1f}万", verticalalignment='bottom',
             horizontalalignment='center')
plt.xticks(index+0.2, df_tmp.index)
plt.yticks(np.arange(0, 1.4e8, 1e7), [
           f"{i//1e4:.0f}万" for i in np.arange(0, 1.4e8, 1e7)], fontsize=15)

plt.subplot(3, 2, 2)
plt.title("中部地带本季组织人次数年度对比", fontsize=15)
df_tmp = pd.concat([df_2019[["指标名称", "本季组织人次数"]].set_index("指标名称"),
                    df_2020[["指标名称", "本季组织人次数"]].set_index("指标名称")], axis=1)
df_tmp.columns = [2019, 2020]
df_tmp = df_tmp.loc[["黑龙江", "吉林", "山西", "内蒙古", "安徽", "河南", "湖北", "湖南", "江西"]]
plt.barh(df_tmp.index, df_tmp[2019], label='2019')
plt.barh(df_tmp.index, -df_tmp[2020], label='2020')
plt.legend(title="年份", loc='lower right')
plt.grid(b=True)
plt.xticks(np.arange(-1e6, 2.7e6, 4e5), [
           f"{abs(i)//1e4:.0f}万" for i in np.arange(-1e6, 2.7e6, 4e5)], fontsize=15)
for y, (x1, x2) in enumerate(df_tmp.values):
    plt.text(x1, y, f"{x1/1e4:.1f}万", verticalalignment='center',
             horizontalalignment='left')
    plt.text(-x2, y, f"{x2/1e4:.1f}万", verticalalignment='center',
             horizontalalignment='right')
plt.xlim([-1.1e6, 2.7e6])

plt.subplot(3, 2, 3)
df_tmp = pd.concat([df_2019[["指标名称", "本季接待人次数"]].set_index("指标名称"),
                    df_2020[["指标名称", "本季接待人次数"]].set_index("指标名称")], axis=1)
df_tmp.columns = [2019, 2020]
df_tmp.columns.name = "年份"
df_tmp = df_tmp.loc[["辽宁", "河北", "天津", "北京", "山东",
                     "江苏", "上海", "浙江", "福建", "广东", "广西", "海南"]]
s = df_tmp[2019]/10000
radius_s = ((s-s.min())/(s.max()-s.min())+0.8).values
wedges, texts1, texts2 = plt.pie(
    s,  # 数据
    explode=[0.1]*df_tmp.shape[0],  # 指定每部分的偏移量
    labels=df_tmp.index,  # 标签
    autopct="%.2f万",  # 饼图上的数据标签显示方式
    pctdistance=0.6,  # 每个饼切片的中心和通过autopct生成的文本开始之间的比例
    labeldistance=1,  # 被画饼标记的直径,默认值:1.1
    shadow=True,  # 阴影
    startangle=0,  # 开始角度
    radius=1.8,  # 半径
    frame=False,  # 图框
    counterclock=True,  # 指定指针方向,顺时针或者逆时针
)
for i, wedge in enumerate(wedges):
    wedge.set_radius(radius_s[i])
for i, text in enumerate(texts1):
    text.set_position(
        tuple(map(lambda x: x*radius_s[i]/1.7, text.get_position())))
for i, text in enumerate(texts2):
    if radius_s[i] < 0.9:
        text.set_text("")
        continue
    text.set_position(
        tuple(map(lambda x: x*radius_s[i]/2, text.get_position())))

plt.subplot(3, 2, 4)
# plt.title("2020年东部沿海地带本季接待人次数", fontsize=15)
s = df_tmp[2020]/10000
radius_s = ((s-s.min())/(s.max()-s.min())+0.8).values
wedges, texts1, texts2 = plt.pie(
    s,  # 数据
    explode=[0.1]*df_tmp.shape[0],  # 指定每部分的偏移量
    labels=df_tmp.index,  # 标签
    autopct="%.2f万",  # 饼图上的数据标签显示方式
    pctdistance=0.6,  # 每个饼切片的中心和通过autopct生成的文本开始之间的比例
    labeldistance=1,  # 被画饼标记的直径,默认值:1.1
    shadow=True,  # 阴影
    startangle=0,  # 开始角度
    radius=1.8,  # 半径
    frame=False,  # 图框
    counterclock=True,  # 指定指针方向,顺时针或者逆时针
)
for i, wedge in enumerate(wedges):
    wedge.set_radius(radius_s[i])
for i, text in enumerate(texts1):
    if radius_s[i] < 0.83:
        text.set_text("")
        continue
    text.set_position(
        tuple(map(lambda x: x*radius_s[i]/1.7, text.get_position())))
for i, text in enumerate(texts2):
    if radius_s[i] < 0.87:
        text.set_text("")
        continue
    text.set_position(
        tuple(map(lambda x: x*radius_s[i]/2, text.get_position())))


plt.subplot(3, 1, 3)
plt.title("西部地带本季接待人天数气泡图", fontsize=15)
df_tmp = pd.concat([df_2019[["指标名称", "本季接待人天数"]].set_index("指标名称"),
                    df_2020[["指标名称", "本季接待人天数"]].set_index("指标名称")], axis=1)
df_tmp.columns = [2019, 2020]
df_tmp.columns.name = "年份"
df_tmp = df_tmp.loc[["陕西", "甘肃", "宁夏", "青海",
                     "新疆", "重庆", "四川", "云南", "贵州", "西藏"]]
index = range(df_tmp.shape[0])
plt.scatter(
    index,
    [2]*df_tmp.shape[0],  # 按照经纬度显示
    s=df_tmp[2019] / 1000,  # 按照单价显示大小
    c=range(df_tmp.shape[0]),  # 按照总价显示颜色
    alpha=0.6,
    cmap="jet",
)
plt.scatter(
    index,
    [1]*df_tmp.shape[0],  # 按照经纬度显示
    s=df_tmp[2020] / 1000,  # 按照单价显示大小
    c=range(df_tmp.shape[0]),  # 按照总价显示颜色
    alpha=0.6,
    cmap="jet",
)
for i, (v1, v2) in enumerate(df_tmp.values):
    plt.text(i, 2, f"{v1/10000:.0f}万", verticalalignment='center',
             horizontalalignment='center', fontsize=15)
    plt.text(i, 1, f"{v2/10000:.0f}万", verticalalignment='bottom',
             horizontalalignment='center', fontsize=15)
plt.xticks(index, df_tmp.index)
plt.yticks([1, 2], [2020, 2019])
plt.ylim([0.5, 2.5])

plt.subplots_adjust(wspace=0.1, hspace=0.4)
plt.show()

png

标签:tmp,index,plt,本季,df,两张,2020,Matplotlib,花里胡哨
来源: https://blog.csdn.net/as604049322/article/details/112491299