不定积分与定积分的计算
作者:互联网
Contents
不定积分与定积分的计算
一、不定积分
原函数的定义:
设 F ( x ) F(x) F(x) , f ( x ) f(x) f(x) 在区间 D D D 上有定义,如果 F ′ ( x ) = f ( x ) F'(x)=f(x) F′(x)=f(x) ,则称 F ( x ) F(x) F(x) 为 f ( x ) f(x) f(x) 的一个原函数。
不定积分的定义:
设 F ′ ( x ) = f ( x ) F'(x)=f(x) F′(x)=f(x) ,则称 f ( x ) f(x) f(x) 的所有原函数为 f ( x ) f(x) f(x) 的不定积分,记作 ∫ f ( x ) d x = F ( x ) + C \displaystyle\int f(x)dx=F(x)+C ∫f(x)dx=F(x)+C
不定积分的性质:
设 f ( x ) f(x) f(x) , g ( x ) g(x) g(x) 存在原函数,则
(1) ( ∫ f ( x ) d x ) ′ = f ( x ) (\displaystyle\int f(x)dx)'=f(x) (∫f(x)dx)′=f(x)
(2) ∫ f ′ ( x ) d x = f ( x ) + C \displaystyle\int f'(x)dx=f(x)+C ∫f′(x)dx=f(x)+C
(3) ∫ ( f ( x ) + g ( x ) ) d x = ∫ f ( x ) d x + ∫ g ( x ) d x \displaystyle\int(f(x)+g(x))dx=\displaystyle\int f(x)dx+\displaystyle\int g(x)dx ∫(f(x)+g(x))dx=∫f(x)dx+∫g(x)dx
(4) ∫ k ⋅ f ( x ) d x = k ⋅ ∫ f ( x ) d x \displaystyle\int k\cdot f(x)dx=k\cdot \displaystyle\int f(x)dx ∫k⋅f(x)dx=k⋅∫f(x)dx
二、不定积分的计算
1. 直接积分法
利用不定积分的性质和积分公式。
例 1. ∫ tan 2 x d x \displaystyle\int\tan^2x\,dx ∫tan2xdx
I = ∫ ( sec 2 x − 1 ) d x = tan x − x + C . I=\displaystyle\int(\sec^2x-1)\,dx=\tan x-x+C. I=∫(sec2x−1)dx=tanx−x+C.
例 2. ∫ sec 2 x csc 2 x d x \displaystyle\int\sec^2x\csc^2x\,dx ∫sec2xcsc2xdx
I = ∫ 1 sin 2 x cos 2 x d x = ∫ sin 2 x + cos 2 x sin 2 x cos 2 x d x = ∫ ( sec 2 x + csc 2 x ) d x = tan x − cot x + C . I=\displaystyle\int\frac{1}{\sin^2x\cos^2x}\,dx=\displaystyle\int\frac{\sin^2x+\cos^2x}{\sin^2x\cos^2x}\,dx=\displaystyle\int(\sec^2x+\csc^2x)dx=\tan x-\cot x+C. I=∫sin2xcos2x1dx=∫sin2xcos2xsin2x+cos2xdx=∫(sec2x+csc2x)dx=tanx−cotx+C.
例 3. ∫ x 3 − 2 x 3 + x + 6 1 + x 2 d x \displaystyle\int\frac{x^3-2x^3+x+6}{1+x^2}\,dx ∫1+x2x3−2x3+x+6dx
I = ∫ ( x − 2 + 8 1 + x 2 ) d x = 1 2 x 2 − 2 x + 8 arctan x + C . I=\displaystyle\int(x-2+\frac{8}{1+x^2})\,dx=\frac{1}{2}x^2-2x+8\arctan x+C. I=∫(x−2+1+x28)dx=21x2−2x+8arctanx+C.
例 4. ∫ max { x , 2 x − 1 } d x \displaystyle\int\max\{x,\,2x-1\}\,dx ∫max{x,2x−1}dx
当 x ≥ 1 x\geq1 x≥1 时, I = ∫ ( 2 x − 1 ) d x = x 2 − x + C I=\displaystyle\int(2x-1)dx=x^2-x+C I=∫(2x−1)dx=x2−x+C
当 x < 1 x<1 x<1 时, I = ∫ x d x = 1 2 x 2 + C I=\displaystyle\int x\,dx=\frac{1}{2}x^2+C I=∫xdx=21x2+C
由于 F ( x ) F(x) F(x) 连续,则
F ( x ) = { x 2 − x + C , x ≥ 1 1 2 x 2 − 1 2 + C , x < 1 . F(x)= \left\{ \begin{array}{lll} x^2-x+C & , & x\geq1 \\ \displaystyle\frac{1}{2}x^2-\frac{1}{2}+C & , & x<1 \end{array} \right. . F(x)={x2−x+C21x2−21+C,,x≥1x<1.
2. 凑微分法(第一类换元)
∫ f ( φ ( x ) ) φ ′ ( x ) d x = ∫ f ( φ ( x ) ) d ( φ ( x ) ) = F ( φ ( x ) ) + C \int f(\varphi(x))\varphi'(x)dx=\int f(\varphi(x))\,d(\varphi(x))=F(\varphi(x))+C ∫f(φ(x))φ′(x)dx=∫f(φ(x))d(φ(x))=F(φ(x))+C
例 5. ∫ ln x x d x \displaystyle\int\frac{\ln x}{x}dx ∫xlnxdx
I = ∫ ln x d ( ln x ) = 1 2 ( ln x ) 2 + C . I=\displaystyle\int\ln x\,d(\ln x)=\frac{1}{2}(\ln x)^2+C. I=∫lnxd(lnx)=21(lnx)2+C.
例 6. ∫ x a 2 − x 2 d x \displaystyle\int\frac{x}{\sqrt{a^2-x^2}}\,dx ∫a2−x2 xdx
I = − 1 2 ∫ d ( a 2 − x 2 ) a 2 − x 2 = − a 2 − x 2 + C . I=-\displaystyle\frac{1}{2}\int\frac{d(a^2-x^2)}{\sqrt{a^2-x^2}}=-\sqrt{a^2-x^2}+C. I=−21∫a2−x2 d(a2−x2)=−a2−x2 +C.
例 7. ∫ d x x ( 1 + x ) \displaystyle\int\frac{dx}{\sqrt{x}(1+x)} ∫x (1+x)dx
I = ∫ 2 d ( x ) 1 + ( x ) 2 = 2 arctan ( x ) + C . I=\displaystyle\int\frac{2\ d(\sqrt{x})}{1+(\sqrt{x})^2}=2\arctan(\sqrt{x})+C. I=∫1+(x )22 d(x )=2arctan(x )+C.
例 8. ∫ 1 a 2 + x 2 d x \displaystyle\int\frac{1}{a^2+x^2}\,dx ∫a2+x21dx (公式16)
I = 1 a 2 ∫ a ⋅ d ( x a ) 1 + ( x a ) 2 = 1 a arctan x a + C . I=\displaystyle\frac{1}{a^2}\int\frac{a\cdot d(\displaystyle\frac{x}{a})}{1+(\displaystyle\frac{x}{a})^2}=\frac{1}{a}\arctan\frac{x}{a}+C. I=a21∫1+(ax)2a⋅d(ax)=a1arctanax+C.
例 9. ∫ tan x d x \displaystyle\int\tan x\,dx ∫tanxdx (公式17)
I = ∫ sin x cos x d x = − ∫ d ( cos x ) cos x = − ln ∣ cos x ∣ + C . I=\displaystyle\int\frac{\sin x}{\cos x}\,dx=-\int\frac{d(\cos x)}{\cos x}=-\ln|\cos x|+C. I=∫cosxsinxdx=−∫cosxd(cosx)=−ln∣cosx∣+C.
3. 变量代换法(第二类换元)
通过变量代换化简被积函数
F
(
x
)
=
∫
f
(
x
)
d
x
=
∫
f
(
φ
(
t
)
)
φ
′
(
t
)
d
t
≜
∫
g
(
t
)
d
t
=
G
(
t
)
+
C
=
G
(
φ
−
1
(
x
)
)
+
C
F(x)=\int f(x)dx=\int f(\varphi(t))\varphi'(t)dt\ \boldsymbol{\triangleq}\int g(t)dt=G(t)+C=G(\varphi^{-1}(x))+C
F(x)=∫f(x)dx=∫f(φ(t))φ′(t)dt ≜∫g(t)dt=G(t)+C=G(φ−1(x))+C
题型 1:根式变换
- 当根式里面仅仅包含基本变量的 1 1 1 次项或其他复杂形式时,令根式为变量 u u u ;
- 当含有多个根式且根式里面的表达式相同时,令根式指数的公倍数对应的根式为 u u u 。
例 10. ∫ d x 1 + 1 + x \displaystyle\int \frac{dx}{1+\sqrt{1+x}} ∫1+1+x dx
设 1 + x = u \displaystyle\sqrt{1+x}=u 1+x =u ,则 x = u 2 − 1 x=u^2-1 x=u2−1 , d x = 2 u d u dx=2u\,du dx=2udu
I = ∫ 2 u 1 + u d u = ∫ ( 2 − 2 1 + u ) d u = 2 u − 2 ln ∣ 1 + u ∣ + C = 2 1 + x − 2 ln ( 1 + 1 + x ) + C I=\displaystyle\int\frac{2u}{1+u}\,du=\displaystyle\int(2-\frac{2}{1+u})\,du=2u-2\ln|1+u|+C=2\sqrt{1+x}-2\ln(1+\sqrt{1+x})+C I=∫1+u2udu=∫(2−1+u2)du=2u−2ln∣1+u∣+C=21+x −2ln(1+1+x )+C
例 11. ∫ d x x + x 3 \displaystyle\int\frac{dx}{\sqrt{x}+\sqrt[3]{x}} ∫x +3x dx
设 x 6 = u \displaystyle\sqrt[6]{x}=u 6x =u ,则 x = u 6 x=u^6 x=u6 , d x = 6 u 5 d u dx=6u^5\,du dx=6u5du
I = ∫ 6 u 5 u 3 + u 2 d u = 6 ∫ u 3 u + 1 d u = 6 ∫ ( u 2 − u + 1 − 1 u + 1 ) d u = 2 u 3 − 3 u 2 + 6 u − 6 ln ∣ 1 + u ∣ + C = 2 x − 3 x 3 + 6 x 6 − 6 ln ( 1 + x 6 ) + C . \begin{aligned} I=&\ \displaystyle\int\frac{6u^5}{u^3+u^2}\,du \\ =&\ 6\displaystyle\int\frac{u^3}{u+1}\,du \\ =&\ 6\displaystyle\int(u^2-u+1-\frac{1}{u+1})\,du \\ =&\ 2u^3-3u^2+6u-6\ln|1+u|+C \\ =&\ 2\sqrt{x}-3\sqrt[3]{x}+6\sqrt[6]{x}-6\ln(1+\sqrt[6]{x})+C. \end{aligned} I===== ∫u3+u26u5du 6∫u+1u3du 6∫(u2−u+1−u+11)du 2u3−3u2+6u−6ln∣1+u∣+C 2x −33x +66x −6ln(1+6x )+C.
题型 2:三角变换
- 被积函数表达式主体能改写成平方和或平方差的形式,尤其是根号下具有该种结构,可以考虑用三角变换。
- a 2 − x 2 ⟹ x = a ⋅ sin t \displaystyle\sqrt{a^2-x^2}\ \ \boldsymbol\Longrightarrow\ \ x=a\cdot\sin t a2−x2 ⟹ x=a⋅sint
- x 2 − a 2 ⟹ x = a ⋅ sec t \displaystyle\sqrt{x^2-a^2}\ \ \boldsymbol\Longrightarrow\ \ x=a\cdot\sec t x2−a2 ⟹ x=a⋅sect
- a 2 + x 2 ⟹ x = a ⋅ tan t \displaystyle\sqrt{a^2+x^2}\ \ \boldsymbol\Longrightarrow\ \ x=a\cdot\tan t a2+x2 ⟹ x=a⋅tant
例 12. ∫ 1 x 2 + a 2 d x \displaystyle\int\frac{1}{\sqrt{x^2+a^2}}\,dx ∫x2+a2 1dx (公式23)
设 x = a tan t x=a\tan t x=atant ,则 d x = a sec 2 t d t dx=a\sec^2t\,dt dx=asec2tdt
I = ∫ a sec 2 t a sec t d t = ∫ sec t d t = ln ∣ sec t + tan t ∣ + C = ln ∣ x + x 2 + a 2 a ∣ + C = ln ( x + x 2 + a 2 ) + C . \begin{aligned} I=&\ \displaystyle\int\frac{a\sec^2t}{a\sec t}\,dt \\ =&\ \displaystyle\int \sec t\,dt \\ =&\ \ln|\sec t+\tan t|+C \\ =&\ \displaystyle\ln\bigg|\frac{x+\sqrt{x^2+a^2}}{a}\bigg|+C \\ =&\ \ln(x+\sqrt{x^2+a^2})+C. \end{aligned} I===== ∫asectasec2tdt ∫sectdt ln∣sect+tant∣+C ln∣∣∣∣ax+x2+a2 ∣∣∣∣+C ln(x+x2+a2 )+C.
例 13. ∫ a 2 − x 2 d x \displaystyle\int\sqrt{a^2-x^2}\,dx ∫a2−x2 dx (公式27)
设 x = a sin t x=a\sin t x=asint ,则 d x = a cos t d t dx=a\cos t\,dt dx=acostdt
I = ∫ a 2 cos 2 t d t = a 2 ∫ 1 + cos 2 t 2 d t = a 2 ( 1 2 t + 1 4 sin 2 t ) + C = a 2 2 arcsin x a + x 2 a 2 − x 2 + C . \begin{aligned} I=&\ \displaystyle\int a^2\cos^2t\,dt \\ =&\ a^2\displaystyle\int\frac{1+\cos2t}{2} \,dt\\ =&\ \displaystyle a^2(\frac{1}{2}t+\frac{1}{4}\sin2t)+C \\ =&\ \displaystyle\frac{a^2}{2}\arcsin\frac{x}{a}+\frac{x}{2}\sqrt{a^2-x^2}+C. \end{aligned} I==== ∫a2cos2tdt a2∫21+cos2tdt a2(21t+41sin2t)+C 2a2arcsinax+2xa2−x2 +C.
例 14. ∫ d x x 2 x 2 − 1 \displaystyle\int\frac{dx}{x^2\sqrt{x^2-1}} ∫x2x2−1 dx
设 x = sec t x=\sec t x=sect ,则 d x = sec t tan t d t dx=\sec t\tan t\,dt dx=secttantdt
I = ∫ sec t tan t sec 2 t tan t d t = ∫ cos t d t = sin t + C = x 2 − 1 x + C . I=\displaystyle\int\frac{\sec t\tan t}{\sec^2t\tan t}\,dt=\displaystyle\int\cos t\,dt=\sin t+C=\frac{\sqrt{x^2-1}}{x}+C. I=∫sec2ttantsecttantdt=∫costdt=sint+C=xx2−1 +C.
题型 3:倒数变换
当分母的次数远远比分子的次数高时,至少两次以上,则考虑令 x = 1 t x=\displaystyle\frac{1}{t} x=t1 。
变换之后一般有两种思路:简化计算;解方程(定积分常见)。
例 15. ∫ d x x 2 x 2 − 1 \displaystyle\int\frac{dx}{x^2\sqrt{x^2-1}} ∫x2x2−1 dx
设 x = 1 t x=\dfrac 1t x=t1,则 d x = − 1 t 2 d t dx=-\dfrac1{t^2}\,dt dx=−t21dt,
I = ∫ t 2 t 2 1 − t 2 ⋅ ( − 1 t 2 ) d t = ∫ − t 1 − t 2 d t = ∫ d ( 1 − t 2 ) 2 1 − t 2 = 1 − t 2 + C = x 2 − 1 x + C . \begin{aligned} I=&\ \int t^2\sqrt{\frac{t^2}{1-t^2}}\cdot(-\frac{1}{t^2})\,dt\\ =&\ \int-\frac{t}{\sqrt{1-t^2}}\,dt\\ =&\ \int\frac{d(1-t^2)}{2\sqrt{1-t^2}}\\ =&\ \sqrt{1-t^2}+C\\ =&\ \frac{\sqrt{x^2-1}}{x}+C. \end{aligned} I===== ∫t21−t2t2 ⋅(−t21)dt ∫−1−t2 tdt ∫21−t2 d(1−t2) 1−t2 +C xx2−1 +C.
例 16. ∫ d x 1 + x 3 \displaystyle\int\frac{dx}{1+x^3} ∫1+x3dx
设 I = ∫ d x 1 + x 3 I=\displaystyle\int\frac{{\rm d}x}{1+x^3} I=∫1+x3dx ,令 x = 1 t x=\dfrac 1t x=t1,则 d x = − 1 t 2 d t dx=-\dfrac1{t^2}\,dt dx=−t21dt ,
设 J = ∫ t 1 + t 3 d t = ∫ x 1 + x 3 d x J=\displaystyle\int\frac{t}{1+t^3}\,dt=\displaystyle\int\frac{x}{1+x^3}\,dx J=∫1+t3tdt=∫1+x3xdx ,
I + J = ∫ d x 1 − x + x 2 = ∫ d ( x − 1 2 ) ( x − 1 2 ) 2 + 3 4 = 2 3 arctan 2 x − 1 3 + C . I − J = ∫ 1 − x + x 2 − x 2 1 + x 3 d x = ∫ d x 1 + x − ∫ x 2 1 + x 3 d x = ln ∣ x + 1 ∣ − 1 3 ln ∣ x 3 + 1 ∣ + C = 2 3 ln ∣ x + 1 ∣ − 1 3 ln ∣ x 2 − x + 1 ∣ + C . ∴ I = 1 3 ln ∣ x + 1 ∣ − 1 6 ln ∣ x 2 − x + 1 ∣ + 3 3 arctan 2 x − 1 3 + C . \begin{aligned} I+J=&\ \int\frac{dx}{1-x+x^2} \\ =&\ \int\frac{d(x-\dfrac{1}{2})}{(x-\dfrac{1}{2})^2+\dfrac{3}{4}}\\ =&\ \dfrac{2}{\sqrt{3}}\arctan\dfrac{2x-1}{\sqrt{3}}+C.\\ I-J=&\ \int\frac{1-x+x^2-x^2}{1+x^3}\,dx \\ =&\ \int\frac{dx}{1+x}-\int\frac{x^2}{1+x^3}\,dx \\ =&\ \ln|x+1|-\dfrac{1}{3}\ln|x^3+1|+C \\ =&\ \frac23\ln|x+1|-\frac13\ln|x^2-x+1|+C. \\ \therefore I=&\ \frac13\ln|x+1|-\frac16\ln|x^2-x+1|+\frac{\sqrt 3}3\arctan\frac{2x-1}{\sqrt 3} +C. \end{aligned} I+J===I−J====∴I= ∫1−x+x2dx ∫(x−21)2+43d(x−21) 3 2arctan3 2x−1+C. ∫1+x31−x+x2−x2dx ∫1+xdx−∫1+x3x2dx ln∣x+1∣−31ln∣x3+1∣+C 32ln∣x+1∣−31ln∣x2−x+1∣+C. 31ln∣x+1∣−61ln∣x2−x+1∣+33 arctan3 2x−1+C.
例 17. ∫ d x x 4 ( 1 + x 2 ) \displaystyle\int\frac{dx}{x^4(1+x^2)} ∫x4(1+x2)dx
设 x = 1 t x=\dfrac 1t x=t1,则 d x = − 1 t 2 d t dx=-\dfrac1{t^2}\,dt dx=−t21dt
I = ∫ t 4 1 + 1 t 2 ⋅ ( − 1 t 2 ) d t = − ∫ t 4 1 + t 2 d t = − ∫ ( t 2 − 1 + 1 1 + t 2 ) d t = − 1 3 t 3 + t − arctan t + C = − 1 3 x 2 + 1 x − arctan 1 x + C . \begin{aligned} I=&\ \int\frac{t^4}{1+\dfrac{1}{t^2}}\cdot(-\dfrac{1}{t^2})\,dt \\ =&\ -\int\frac{t^4}{1+t^2}\,dt \\ =&\ -\int(t^2-1+\frac{1}{1+t^2})\,dt \\ =&\ -\frac13t^3+t-\arctan t+C \\ =&\ -\frac1{3x^2}+\frac{1}{x}-\arctan\frac1x+C. \end{aligned} I===== ∫1+t21t4⋅(−t21)dt −∫1+t2t4dt −∫(t2−1+1+t21)dt −31t3+t−arctant+C −3x21+x1−arctanx1+C.
4. 分部积分法
设
u
=
u
(
x
)
u=u(x)
u=u(x) ,
v
=
v
(
x
)
v=v(x)
v=v(x) 为可微函数,则有
∫
u
d
v
=
u
v
−
∫
v
d
u
\int udv=uv-\int vdu
∫udv=uv−∫vdu
一般用于被积函数为反三角函数、三角函数、对数函数、指数函数和幂函数的乘积的计算,含
n
n
n 递归式的证明和通项的解,抽象函数的综合题等等。
目的:降次,寻找不变量,化有理式等。
例 18. ∫ x 2 e x d x \displaystyle\int x^2e^x\,dx ∫x2exdx
I = ∫ x 2 d ( e x ) = x 2 e x − ∫ e x ( 2 x ) d x = x 2 e x − 2 ∫ x d ( e x ) = x 2 e x − 2 x e x + 2 ∫ e x d x = ( x 2 − 2 x + 2 ) e x + C . \begin{aligned} I=&\ \int x^2\,d(e^x) \\ =&\ x^2e^x-\int e^x(2x)\,dx \\ =&\ x^2e^x-2\int x\,d(e^x) \\ =&\ x^2e^x-2xe^x+2\int e^x\,dx \\ =&\ (x^2-2x+2)e^x+C. \end{aligned} I===== ∫x2d(ex) x2ex−∫ex(2x)dx x2ex−2∫xd(ex) x2ex−2xex+2∫exdx (x2−2x+2)ex+C.
例 19. ∫ ln ( 1 + x 2 ) d x \displaystyle\int \ln(1+x^2)\,dx ∫ln(1+x2)dx
I = x ln ( 1 + x 2 ) − ∫ x ⋅ 2 x 1 + x 2 d x = x ln ( 1 + x 2 ) − 2 ∫ ( 1 − 1 1 + x 2 ) d x = x ln ( 1 + x 2 ) − 2 x + 2 arctan x + C . \begin{aligned} I=&\ x\ln(1+x^2)-\int x\cdot\frac{2x}{1+x^2}\,dx \\ =&\ x\ln(1+x^2)-2\int(1-\frac{1}{1+x^2})\,dx \\ =&\ x\ln(1+x^2)-2x+2\arctan x+C. \end{aligned} I=== xln(1+x2)−∫x⋅1+x22xdx xln(1+x2)−2∫(1−1+x21)dx xln(1+x2)−2x+2arctanx+C.
例 20. ∫ x 2 arctan x d x \displaystyle\int x^2\arctan x\,dx ∫x2arctanxdx
I = 1 3 ∫ arctan x d ( x 3 ) = 1 3 x 3 arctan x − 1 3 ∫ x 3 1 + x 2 d x = 1 3 x 3 arctan x − 1 6 ∫ x 2 1 + x 2 d ( x 2 ) = 1 3 x 3 arctan x − 1 6 ∫ ( 1 − 1 1 + x 2 ) d ( x 2 ) = 1 3 x 3 arctan x − 1 6 x 2 + 1 6 ln ( 1 + x 2 ) + C . \begin{aligned} I=&\ \frac13\int\arctan x\,d(x^3) \\ =&\ \frac13x^3\arctan x-\frac13\int\frac{x^3}{1+x^2}\,dx \\ =&\ \frac13x^3\arctan x-\frac16\int\frac{x^2}{1+x^2}\,d(x^2) \\ =&\ \frac13x^3\arctan x-\frac16\int(1-\frac{1}{1+x^2})\,d(x^2) \\ =&\ \frac13x^3\arctan x-\frac16x^2+\frac16\ln(1+x^2)+C. \\ \end{aligned} I===== 31∫arctanxd(x3) 31x3arctanx−31∫1+x2x3dx 31x3arctanx−61∫1+x2x2d(x2) 31x3arctanx−61∫(1−1+x21)d(x2) 31x3arctanx−61x2+61ln(1+x2)+C.
例 21. ∫ x sin 3 x d x \displaystyle\int x\sin 3x\,dx ∫xsin3xdx
I = − 1 3 ∫ x d ( cos 3 x ) = − 1 3 x cos 3 x + 1 3 ∫ cos 3 x d x = − 1 3 x cos 3 x + 1 9 sin 3 x + C . \begin{aligned} I=&\ -\frac13\int x\,d(\cos3x) \\ =&\ -\frac13x\cos3x+\frac13\int\cos3x\,dx \\ =&\ -\frac13x\cos3x+\frac19\sin3x+C. \end{aligned} I=== −31∫xd(cos3x) −31xcos3x+31∫cos3xdx −31xcos3x+91sin3x+C.
例 22. 证明: I n = ∫ tan n x d x = tan n − 1 x n − 1 − I n − 2 I_n=\displaystyle\int\tan^nx\,dx=\frac{\tan^{n-1}x}{n-1}-I_{n-2} In=∫tannxdx=n−1tann−1x−In−2
I n = ∫ tan n x d x = ∫ tan n − 2 x ( 1 + tan 2 x ) d x − ∫ tan n − 2 x d x = ∫ tan n − 2 x d ( tan x ) − I n − 2 = tan n − 1 x n − 1 − I n − 2 . \begin{aligned} I_n=&\ \int\tan^nx\,dx \\ =&\ \int\tan^{n-2}x(1+\tan^2x)\,dx-\int\tan^{n-2}x\,dx \\ =&\ \int\tan^{n-2}x\,d(\tan x)-I_{n-2} \\ =&\ \frac{\tan^{n-1}x}{n-1}-I_{n-2} . \end{aligned} In==== ∫tannxdx ∫tann−2x(1+tan2x)dx−∫tann−2xdx ∫tann−2xd(tanx)−In−2 n−1tann−1x−In−2.
例 23. 设 ∫ x f ( x ) d x = 1 − x 2 + C \displaystyle\int x\,f(x)\,dx=\sqrt{1-x^2}+C ∫xf(x)dx=1−x2 +C ,求 ∫ x 2 f ( x ) d x \displaystyle\int x^2f(x)\,dx ∫x2f(x)dx
(1) 求导
x f ( x ) = − x 1 − x 2 x\,f(x)=-\frac{x}{\sqrt{1-x^2}} xf(x)=−1−x2 xf ( x ) = − 1 1 − x 2 f(x)=-\frac{1}{\sqrt{1-x^2}} f(x)=−1−x2 1
(2) 积分
I = ∫ − x 2 1 − x 2 d x = x = sin t − ∫ sin 2 t d t = − t 2 + 1 4 sin 2 t + C = − 1 2 arcsin x + 1 2 x 1 − x 2 + C . \begin{aligned} I=&\ \int-\frac{x^2}{\sqrt{1-x^2}}\,dx \\ \xlongequal{x=\sin t}&\ -\int\sin^2t\,dt \\ =&\ -\frac{t}{2}+\frac{1}{4}\sin2t+C \\ =&\ -\frac12\arcsin x+\frac12x\sqrt{1-x^2}+C. \end{aligned} I=x=sint == ∫−1−x2 x2dx −∫sin2tdt −2t+41sin2t+C −21arcsinx+21x1−x2 +C.
三、定积分
定积分的定义:
设
f
(
x
)
f(x)
f(x) 是定义在闭区间
[
a
,
b
]
[a,\,b]
[a,b] 上的有界函数,在
[
a
,
b
]
[a,\,b]
[a,b] 中任意插入
n
−
1
n-1
n−1 个分点:
a
=
x
0
<
x
1
<
x
2
<
.
.
.
<
x
n
=
b
a=x_0<x_1<x_2<...<x_n=b
a=x0<x1<x2<...<xn=b
将
[
a
,
b
]
[a,\,b]
[a,b] 分为
n
n
n 个子区间,其长度为
Δ
x
i
=
x
i
−
x
i
−
1
\Delta x_i=x_i-x_{i-1}
Δxi=xi−xi−1 。
在每个子区间上任取一点 ξ i \xi_i ξi ,作和式 ∑ i = 1 n f ( ξ i ) ⋅ Δ x i \displaystyle\sum_{i=1}^n f(\xi_i)\cdot\Delta x_i i=1∑nf(ξi)⋅Δxi ,称为积分和或黎曼和。
如果当子区间的最大长度 λ = max 1 ≤ i ≤ n { Δ x i } → 0 \lambda=\displaystyle\max_{1\leq i\leq n}\{\Delta x_i\}\to0 λ=1≤i≤nmax{Δxi}→0 时,积分和的极限存在,且与区间 [ a , b ] [a,\,b] [a,b] 的分法和点 ξ i \xi_i ξi 的取法无关,则称函数 f ( x ) f(x) f(x) 在区间 [ a , b ] [a,\,b] [a,b] 上是可积的,记 ∫ a b f ( x ) d x = lim λ → 0 ∑ i = 1 n f ( ξ i ) Δ x i \displaystyle\int_a^bf(x)\,dx=\lim_{\lambda\to0}\sum_{i=1}^nf(\xi_i)\Delta x_i ∫abf(x)dx=λ→0limi=1∑nf(ξi)Δxi
定积分的性质:
(有限可加性) ∫ a b f ( x ) d x = ∫ a c f ( x ) d x + ∫ c b f ( x ) d x \displaystyle\int_a^bf(x)\,dx=\displaystyle\int_a^cf(x)\,dx+\displaystyle\int_c^bf(x)\,dx ∫abf(x)dx=∫acf(x)dx+∫cbf(x)dx
(保号性)设 f ( x ) f(x) f(x) 在区间 [ a , b ] [a,\,b] [a,b] 上可积且 f ( x ) ≥ 0 f(x)\geq0 f(x)≥0 ,则 ∫ a b f ( x ) d x ≥ 0 \displaystyle\int_a^bf(x)\,dx\geq0 ∫abf(x)dx≥0
(绝对值不等式) 设 f ( x ) f(x) f(x) 在区间 [ a , b ] [a,\,b] [a,b] 上可积,则 ∣ ∫ a b f ( x ) d x ∣ ≤ ∫ a b ∣ f ( x ) ∣ d x \bigg|\displaystyle\int_a^bf(x)\,dx\bigg|\leq\int_a^b\big|f(x)\big|\,dx ∣∣∣∣∫abf(x)dx∣∣∣∣≤∫ab∣∣f(x)∣∣dx
(估值不等式)设 f ( x ) f(x) f(x) 在区间 [ a , b ] [a,\,b] [a,b] 上可积,且 m ≤ f ( x ) ≤ M m\leq f(x)\leq M m≤f(x)≤M ,则 m ( b − a ) ≤ ∫ a b f ( x ) d x ≤ M ( b − a ) m(b-a)\leq\displaystyle\int_a^bf(x)\,dx\leq M(b-a) m(b−a)≤∫abf(x)dx≤M(b−a)
**(定积分中值定理)**设 f ( x ) f(x) f(x) 在 [ a , b ] [a,\,b] [a,b] 上连续,则 ∃ ξ ∈ ( a , b ) \exist\xi\in(a,\,b) ∃ξ∈(a,b) ,有 ∫ a b f ( x ) d x = f ( ξ ) ( b − a ) \displaystyle\int_a^bf(x)\,dx=f(\xi)(b-a) ∫abf(x)dx=f(ξ)(b−a)
(和式极限) ∫ 0 1 f ( x ) d x = lim n → ∞ 1 n ∑ k = 1 n f ( k n ) \displaystyle\int_0^1f(x)\,dx=\lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^nf(\frac{k}{n}) ∫01f(x)dx=n→∞limn1k=1∑nf(nk)
变上限函数的导数:
设 f ( x ) f(x) f(x) 在 [ a , b ] [a,\,b] [a,b] 上连续,定义 F ( x ) = ∫ a x f ( t ) d t F(x)=\displaystyle\int_a^xf(t)\,dt F(x)=∫axf(t)dt ,则 F ′ ( x ) = f ( x ) F'(x)=f(x) F′(x)=f(x)
设
f
(
x
)
f(x)
f(x) 在
R
\R
R 上连续,
α
(
x
)
,
β
(
x
)
\alpha(x),\ \beta(x)
α(x), β(x) 在
R
\R
R 上可导,则
d
d
x
(
∫
α
(
x
)
β
(
x
)
f
(
t
)
d
t
)
=
β
′
(
x
)
f
(
β
(
x
)
)
−
α
′
(
x
)
f
(
α
(
x
)
)
\frac{d}{dx}\left(\int_{\alpha(x)}^{\beta(x)}f(t)\,dt\right)=\beta'(x)f\left(\beta(x)\right)-\alpha'(x)f(\alpha(x))
dxd(∫α(x)β(x)f(t)dt)=β′(x)f(β(x))−α′(x)f(α(x))
牛顿-莱布尼兹公式
设
f
(
x
)
f(x)
f(x) 在
[
a
,
b
]
[a,\,b]
[a,b] 上连续,且
F
′
(
x
)
=
f
(
x
)
F'(x)=f(x)
F′(x)=f(x) ,则
∫
a
b
f
(
x
)
d
x
=
F
(
b
)
−
F
(
a
)
≜
F
(
x
)
∣
a
b
\int_a^bf(x)\,dx=F(b)-F(a)\triangleq F(x)\bigg|_a^b
∫abf(x)dx=F(b)−F(a)≜F(x)∣∣∣∣ab
四、定积分的计算
1. 和式极限的计算
例 24. lim n → ∞ ( 1 n 2 + 1 2 + 2 n 2 + 2 2 + . . . + n n 2 + n 2 ) \displaystyle\lim_{n\to\infty}(\frac{1}{n^2+1^2}+\frac{2}{n^2+2^2}+...+\frac{n}{n^2+n^2}) n→∞lim(n2+121+n2+222+...+n2+n2n)
S n = ∑ k = 1 n k n 2 + k 2 = 1 n ∑ k = 1 n k n 1 + ( k n ) 2 S_n=\displaystyle\sum_{k=1}^n\frac{k}{n^2+k^2}=\frac{1}{n}\sum_{k=1}^n\frac{\dfrac{k}{n}}{1+(\dfrac{k}{n})^2} Sn=k=1∑nn2+k2k=n1k=1∑n1+(nk)2nk
设 f ( x ) = x 1 + x 2 f(x)=\dfrac{x}{1+x^2} f(x)=1+x2x ,
lim n → ∞ S n = ∫ 0 1 x 1 + x 2 d x = 1 2 ln ( 1 + x 2 ) ∣ 0 1 = 1 2 ln 2. \begin{aligned} \lim_{n\to\infty}S_n=&\ \int_0^1\dfrac{x}{1+x^2}\,dx \\ =&\ \frac12\ln(1+x^2)\bigg|_0^1 \\ =&\ \frac12\ln2 . \end{aligned} n→∞limSn=== ∫011+x2xdx 21ln(1+x2)∣∣∣∣01 21ln2.
例 25. lim n → ∞ 1 n ∑ k = 1 n e k n \displaystyle\lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^ne^{\frac{k}{n}} n→∞limn1k=1∑nenk
设 f ( x ) = e x f(x)=e^x f(x)=ex ,
lim n → ∞ S n = ∫ 0 1 e x d x = e x ∣ 0 1 = e − 1. \begin{aligned} \lim_{n\to\infty}S_n=&\ \int_0^1e^x\,dx \\ =&\ e^x\bigg|_0^1 \\ =&\ e-1 . \end{aligned} n→∞limSn=== ∫01exdx ex∣∣∣∣01 e−1.
另:
lim n → ∞ S n = lim n → ∞ 1 n e 1 n ( 1 − e n n ) ( 1 − e 1 n ) = lim n → ∞ 1 n e 1 n ( 1 − e ) ( 1 − e 1 n ) = e − 1. \begin{aligned} \lim_{n\to\infty}S_n=&\ \lim_{n\to\infty}\frac1n\frac{e^\frac{1}{n}(1-e^\frac{n}{n})}{(1-e^\frac{1}{n})} \\ =&\ \lim_{n\to\infty}\frac1n\frac{e^\frac{1}{n}(1-e)}{(1-e^\frac{1}{n})}\\ =&\ e-1 . \end{aligned} n→∞limSn=== n→∞limn1(1−en1)en1(1−enn) n→∞limn1(1−en1)en1(1−e) e−1.
2. 直接积分法
应用牛顿-莱布尼兹公式,先求得原函数再代入端值。
例 26. ∫ − 1 0 x + 2 x 2 + 2 x + 2 d x \displaystyle\int_{-1}^0\frac{x+2}{x^2+2x+2}\,dx ∫−10x2+2x+2x+2dx
I = ∫ − 1 0 x + 1 ( x + 1 ) 2 + 1 d x + ∫ − 1 0 1 ( x + 1 ) 2 + 1 d x = 1 2 ln ( ( x + 1 ) 2 + 1 ) ) ∣ − 1 0 + arctan ( x + 1 ) ∣ − 1 0 = 1 2 ln 2 + π 4 . \begin{aligned} I=&\ \int_{-1}^0\frac{x+1}{(x+1)^2+1}\,dx+\int_{-1}^0\frac{1}{(x+1)^2+1}\,dx \\ =&\ \frac12\ln((x+1)^2+1))\bigg|_{-1}^0+\arctan(x+1)\bigg|_{-1}^0 \\ =&\ \frac12\ln2+\frac\pi4. \end{aligned} I=== ∫−10(x+1)2+1x+1dx+∫−10(x+1)2+11dx 21ln((x+1)2+1))∣∣∣∣−10+arctan(x+1)∣∣∣∣−10 21ln2+4π.
3. 换元积分法
注意换元换限
设
x
=
φ
(
t
)
x=\varphi(t)
x=φ(t) ,
x
∈
[
a
,
b
]
⟶
t
∈
[
α
,
β
]
x\in[a,\,b] \ \longrightarrow\ t\in[\alpha,\,\beta]
x∈[a,b] ⟶ t∈[α,β]
∫
a
b
f
(
x
)
d
x
=
∫
α
β
f
(
φ
(
t
)
)
φ
′
(
t
)
d
t
≜
G
(
t
)
∣
α
β
=
G
(
β
)
−
G
(
α
)
\int_a^bf(x)\,dx=\int_\alpha^\beta f(\varphi(t))\varphi'(t)\,dt\triangleq G(t)\bigg|_\alpha^\beta=G(\beta)-G(\alpha)
∫abf(x)dx=∫αβf(φ(t))φ′(t)dt≜G(t)∣∣∣∣αβ=G(β)−G(α)
题型 1:根式变换,三角变换,倒数变换同不定积分。
题型 2:线性变换
常用于特殊的积分区间或被积函数中存在线性变换的表达式。
常见形式
(1) 积分区间 [ 0 , b ] [0,\,b] [0,b] ,令 x = b − t x=b-t x=b−t 或 x = b 2 − t x=\displaystyle\frac{b}{2}-t x=2b−t
(2) 积分区间 [ a , b ] [a,\,b] [a,b] ,令 x = a + b − t x=a+b-t x=a+b−t 或 x = a + b 2 − t x=\displaystyle\frac{a+b}{2}-t x=2a+b−t
(3) 积分区间 [ − a , a ] [-a,\,a] [−a,a] ,令 x = − t x=-t x=−t
(4) 积分区间 [ 1 a , a ] [\displaystyle\frac{1}{a},\,a] [a1,a] ,令 x = 1 t x=\displaystyle\frac{1}{t} x=t1 ( a > 0 ) (a>0) (a>0)
例 27. ∫ 0 π 4 ln ( 1 + tan x ) d x \displaystyle\int_0^{\frac{\pi}{4}}\ln(1+\tan x)\,dx ∫04πln(1+tanx)dx
设 t = π 4 − x t=\dfrac\pi4-x t=4π−x
I = ∫ 0 π 4 ln ( 1 + 1 − tan t 1 + tan t ) d t = ∫ 0 π 4 ln ( 2 1 + tan t ) d t = π 4 ln 2 − ∫ 0 π 4 ln ( 1 + tan t ) d t = π 4 ln 2 − I ∴ I = π 8 ln 2. \begin{aligned} I=&\ \int_{0}^{\frac\pi4} \ln(1+\dfrac{1-\tan t}{1+\tan t})\,dt \\ =&\ \int_{0}^{\frac\pi4} \ln(\dfrac{2}{1+\tan t})\,dt \\ =&\ \dfrac\pi4\ln2-\int_{0}^{\frac\pi4} \ln(1+\tan t)\,dt \\ =&\ \dfrac\pi4\ln2-I \\ \\ \therefore I=&\ \frac\pi8\ln2. \end{aligned} I====∴I= ∫04πln(1+1+tant1−tant)dt ∫04πln(1+tant2)dt 4πln2−∫04πln(1+tant)dt 4πln2−I 8πln2.
4. 对称区间上的定积分
题型 1 :被积函数为奇函数/偶函数
∫
−
a
a
f
(
x
)
d
x
=
∫
0
a
[
f
(
x
)
+
f
(
−
x
)
]
d
x
=
{
0
,
f
(
x
)
为奇函数
2
∫
0
a
f
(
x
)
d
x
,
f
(
x
)
为偶函数
\int_{-a}^af(x)dx=\int_{0}^a[f(x)+f(-x)]\,dx= \left\{ \begin{array}{lll} 0 & , & f(x)\text{为奇函数} \\ 2\displaystyle\int_0^af(x)dx & , & f(x)\text{为偶函数} \end{array} \right.
∫−aaf(x)dx=∫0a[f(x)+f(−x)]dx=⎩⎨⎧02∫0af(x)dx,,f(x)为奇函数f(x)为偶函数
题型 2 :分母具有如下形式:
设
f
(
x
)
f(x)
f(x) 为偶函数
f
(
x
)
1
+
a
x
+
f
(
−
x
)
1
+
a
−
x
=
f
(
x
)
1
+
a
x
+
f
(
x
)
⋅
a
x
1
+
a
x
=
f
(
x
)
\frac{f(x)}{1+a^x}+\frac{f(-x)}{1+a^{-x}}=\frac{f(x)}{1+a^x}+\frac{f(x)\cdot a^x}{1+a^x}=f(x)
1+axf(x)+1+a−xf(−x)=1+axf(x)+1+axf(x)⋅ax=f(x)
f ( x ) 1 − a x + f ( − x ) 1 − a − x = f ( x ) 1 − a x − f ( x ) ⋅ a x 1 − a x = f ( x ) \frac{f(x)}{1-a^x}+\frac{f(-x)}{1-a^{-x}}=\frac{f(x)}{1-a^x}-\frac{f(x)\cdot a^x}{1-a^x}=f(x) 1−axf(x)+1−a−xf(−x)=1−axf(x)−1−axf(x)⋅ax=f(x)
例 28. ∫ − π 2 π 2 ( 1 − cos 2 x ) 3 2 d x \displaystyle\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}(1-\cos^2x)^{\frac{3}{2}}\,dx ∫−2π2π(1−cos2x)23dx
I = ∫ − π 2 π 2 ∣ sin 3 x ∣ d x = 2 ∫ 0 π 2 sin 3 x d x = − 2 ∫ 0 π 2 ( 1 − cos 2 x ) d cos x = − ( 2 cos x − 2 3 cos 3 x ) ∣ 0 π 2 = 4 3 . \begin{aligned} I=&\ \displaystyle\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}|\sin^3x|\,dx \\ =&\ 2\int_0^{\frac{\pi}{2}}\sin^3x\,dx \\ =&\ -2\int_0^{\frac{\pi}{2}}(1-\cos^2x)\,d\cos x \\ =&\ -(2\cos x-\frac23\cos^3x)\bigg|_0^\frac\pi2 \\ =&\ \frac43. \end{aligned} I===== ∫−2π2π∣sin3x∣dx 2∫02πsin3xdx −2∫02π(1−cos2x)dcosx −(2cosx−32cos3x)∣∣∣∣02π 34.
例 29. ∫ − 1 1 ( x 2 ln 2 − x 2 + x + 1 − x 2 ) d x \displaystyle\int_{-1}^1(x^2\ln\frac{2-x}{2+x}+\sqrt{1-x^2})\,dx ∫−11(x2ln2+x2−x+1−x2 )dx
x 2 ln 2 − x 2 + x x^2\ln\dfrac{2-x}{2+x} x2ln2+x2−x 是奇函数, 1 − x 2 \sqrt{1-x^2} 1−x2 是偶函数
I = 2 ∫ 0 1 1 − x 2 d x = π 2 . \begin{aligned} I=&\ 2\int_0^1\sqrt{1-x^2}\,dx=\frac\pi2. \end{aligned} I= 2∫011−x2 dx=2π.
例 30. ∫ − 2 2 x 2 1 + e x d x \displaystyle\int_{-2}^2\frac{x^2}{1+e^x}\,dx ∫−221+exx2dx
I = ∫ 0 2 ( x 2 1 + e x + ( − x ) 2 1 + e − x ) d x = ∫ 0 2 x 2 d x = 8 3 . \begin{aligned} I=&\ \int_0^2\left(\frac{x^2}{1+e^x}+\frac{(-x)^2}{1+e^{-x}}\right)\,dx \\ =&\ \int_0^2x^2\,dx \\ =&\ \frac83. \end{aligned} I=== ∫02(1+exx2+1+e−x(−x)2)dx ∫02x2dx 38.
例 31. ∫ − 1 1 x 2020 + 1 202 0 x + 1 d x \displaystyle\int_{-1}^1\frac{x^{2020}+1}{2020^x+1}\,dx ∫−112020x+1x2020+1dx
I = ∫ 0 1 ( x 2000 + 1 202 0 x + 1 + ( − x ) 2000 + 1 202 0 − x + 1 ) d x = ∫ 0 1 ( x 2020 + 1 ) d x = 2022 2021 . \begin{aligned} I=&\ \int_0^1\left(\frac{x^{2000}+1}{2020^x+1}+\frac{(-x)^{2000}+1}{2020^{-x}+1}\right)\,dx \\ =&\ \int_0^1(x^{2020}+1)\,dx \\ =&\ \frac{2022}{2021}. \end{aligned} I=== ∫01(2020x+1x2000+1+2020−x+1(−x)2000+1)dx ∫01(x2020+1)dx 20212022.
5. 分部积分法
设
u
=
u
(
x
)
u=u(x)
u=u(x) ,
v
=
v
(
x
)
v=v(x)
v=v(x) 均有连续导数,则有
∫
a
b
u
d
v
=
u
v
∣
a
b
−
∫
a
b
v
d
u
\int_a^b udv=uv\bigg|_a^b-\int_a^b vdu
∫abudv=uv∣∣∣∣ab−∫abvdu
常见于综合题
例 32. ∫ 0 1 ln ( 1 + x 2 ) d x \displaystyle\int_0^1\ln(1+x^2)\,dx ∫01ln(1+x2)dx
I = x ⋅ ln ( 1 + x 2 ) ∣ 0 1 − ∫ 0 1 x ⋅ 2 x 1 + x 2 d x = ln 2 − 2 ∫ 0 1 ( 1 − 1 1 + x 2 ) d x = ln 2 − 2 ( x − arctan x ) ∣ 0 1 = ln 2 − 2 + π 2 . \begin{aligned} I=&\ x\cdot\ln(1+x^2)\bigg|_0^1- \int_0^1x\cdot\frac{2x}{1+x^2}\,dx \\ =&\ \ln2-2\int_0^1(1-\frac{1}{1+x^2})\,dx \\ =&\ \ln2-2(x-\arctan x)\bigg|_0^1 \\ =&\ \ln2-2+\frac\pi2. \end{aligned} I==== x⋅ln(1+x2)∣∣∣∣01−∫01x⋅1+x22xdx ln2−2∫01(1−1+x21)dx ln2−2(x−arctanx)∣∣∣∣01 ln2−2+2π.
例 33. ∫ 0 1 x e x d x \displaystyle\int_0^1xe^x\,dx ∫01xexdx
I = ∫ 0 1 x d ( e x ) = x ⋅ e x ∣ 0 1 − ∫ 0 1 e x d x = e − e x ∣ 0 1 = 1. \begin{aligned} I=&\ \int_0^1x\,d(e^x) \\ =&\ x\cdot e^x\bigg|_0^1- \int_0^1e^x\,dx \\ =&\ e-e^x\bigg|_0^1 \\ =&\ 1. \end{aligned} I==== ∫01xd(ex) x⋅ex∣∣∣∣01−∫01exdx e−ex∣∣∣∣01 1.
例 34. 设 f ′ ′ ( x ) f''(x) f′′(x) 在 [ 0 , 2 ] [0,\,2] [0,2] 上连续,且 f ( 0 ) = 1 f(0)=1 f(0)=1 , f ( 2 ) = 3 f(2)=3 f(2)=3, f ′ ( 2 ) = 5 f'(2)=5 f′(2)=5 ,求 ∫ 0 2 x f ′ ′ ( x ) d x \displaystyle\int_0^2xf''(x)\,dx ∫02xf′′(x)dx
∫ 0 2 x f ′ ′ ( x ) d x = ∫ 0 2 x d ( f ′ ( x ) ) = x f ′ ( x ) ∣ 0 2 − ∫ 0 2 f ′ ( x ) d x = 2 f ′ ( 2 ) − ( f ( 2 ) − f ( 0 ) ) = 2 × 5 − 3 + 1 = 8. \begin{aligned} \int_0^2xf''(x)\,dx=&\ \int_0^2x\,d(f'(x)) \\ =&\ xf'(x)\bigg|_0^2-\int_0^2f'(x)\,dx \\ =&\ 2f'(2)-(f(2)-f(0)) \\ =&\ 2\times5-3+1 \\ =&\ 8. \end{aligned} ∫02xf′′(x)dx===== ∫02xd(f′(x)) xf′(x)∣∣∣∣02−∫02f′(x)dx 2f′(2)−(f(2)−f(0)) 2×5−3+1 8.
例 35. (Wallis公式)设 I 0 = π 2 I_0=\displaystyle\frac{\pi}{2} I0=2π , I 1 = 1 I_1=1 I1=1 ,设 I n = ∫ 0 π 2 sin n x d x I_n=\displaystyle\int_0^{\frac{\pi}{2}}\sin^nx\,dx In=∫02πsinnxdx , n ≥ 2 n\geq2 n≥2 ,则
I n = ∫ 0 π 2 sin n x d x = ∫ 0 π 2 cos n x d x = n − 1 n I n − 2 I_n=\displaystyle\int_0^{\frac{\pi}{2}}\sin^nx\,dx=\displaystyle\int_0^{\frac{\pi}{2}}\cos^nx\,dx=\frac{n-1}{n}I_{n-2} In=∫02πsinnxdx=∫02πcosnxdx=nn−1In−2
证明:
I n = − ∫ 0 π 2 sin n − 1 x d cos x = − ( sin n − 1 x cos x ) ∣ 0 π 2 + ( n − 1 ) ∫ 0 π 2 cos 2 x sin n − 2 x d x = 0 + ( n − 1 ) ∫ 0 π 2 ( 1 − sin 2 x ) sin n − 2 x d x = ( n − 1 ) ∫ 0 π 2 sin n − 2 x d x − ( n − 1 ) ∫ 0 π 2 sin n x d x = ( n − 1 ) I n − 2 − ( n − 1 ) I n ∴ I n = n − 1 n I n − 2 . \begin{aligned} I_n=&\ -\int_0^{\frac\pi2}\sin^{n-1}x\,d\cos x \\ =&\ -(\sin^{n-1}x\cos x)\bigg|_0^{\frac\pi2}+(n-1)\int_0^{\frac\pi2}\cos^2x\sin^{n-2}x\,dx \\ =&\ 0+(n-1)\int_0^{\frac\pi2}(1-\sin^2x)\sin^{n-2}x\,dx \\ =&\ (n-1)\int_0^{\frac\pi2}\sin^{n-2}x\,dx-(n-1)\int_0^{\frac\pi2}\sin^{n}x\,dx \\ =&\ (n-1)I_{n-2}-(n-1)I_n \\ \\ \therefore I_n=&\ \frac{n-1}{n}I_{n-2}. \end{aligned} In=====∴In= −∫02πsinn−1xdcosx −(sinn−1xcosx)∣∣∣∣02π+(n−1)∫02πcos2xsinn−2xdx 0+(n−1)∫02π(1−sin2x)sinn−2xdx (n−1)∫02πsinn−2xdx−(n−1)∫02πsinnxdx (n−1)In−2−(n−1)In nn−1In−2.
Wallis公式推论:
I
2
n
=
2
n
−
1
2
n
⋅
2
n
−
3
2
n
−
2
⋅
.
.
.
⋅
3
4
⋅
1
2
⋅
π
2
=
(
2
n
−
1
)
!
!
(
2
n
)
!
!
⋅
π
2
I_{2n}=\frac{2n-1}{2n}\cdot\frac{2n-3}{2n-2}\cdot...\cdot\frac34\cdot\frac12\cdot\frac\pi2=\frac{(2n-1)!!}{(2n)!!}\cdot\frac\pi2
I2n=2n2n−1⋅2n−22n−3⋅...⋅43⋅21⋅2π=(2n)!!(2n−1)!!⋅2π
I 2 n + 1 = 2 n 2 n + 1 ⋅ 2 n − 2 2 n − 1 ⋅ . . . ⋅ 4 5 ⋅ 2 3 ⋅ 1 = ( 2 n ) ! ! ( 2 n + 1 ) ! ! I_{2n+1}=\frac{2n}{2n+1}\cdot\frac{2n-2}{2n-1}\cdot...\cdot\frac45\cdot\frac23\cdot1=\frac{(2n)!!}{(2n+1)!!} I2n+1=2n+12n⋅2n−12n−2⋅...⋅54⋅32⋅1=(2n+1)!!(2n)!!
例 36. ∫ 0 a x 4 a 2 − x 2 d x \displaystyle\int_0^ax^4\sqrt{a^2-x^2}\,dx ∫0ax4a2−x2 dx
设 x = a sin t x=a\sin t x=asint ,则 d x = a cos t d t dx=a\cos t\,dt dx=acostdt
I = ∫ 0 π 2 a 4 sin 4 t ⋅ a cos t ⋅ a cos t d t = a 6 ∫ 0 π 2 sin 4 t ( 1 − sin 2 t ) d t = a 6 ( I 4 − I 6 ) = a 6 ( 3 4 ⋅ 1 2 ⋅ π 2 − 5 6 ⋅ 3 4 ⋅ 1 2 ⋅ π 2 ) = π 32 a 6 \begin{aligned} I=&\ \int_0^{\frac\pi2}a^4\sin^4t\cdot a\cos t\cdot a\cos t\,dt \\ =&\ a^6\int_0^{\frac\pi2}\sin^4t(1-\sin^2t)\,dt \\ =&\ a^6(I_4-I_6) \\ =&\ a^6\left(\frac34\cdot\frac12\cdot\frac\pi2-\frac56\cdot\frac34\cdot\frac12\cdot\frac\pi2\right) \\ =&\ \frac\pi{32}a^6 \end{aligned} I===== ∫02πa4sin4t⋅acost⋅acostdt a6∫02πsin4t(1−sin2t)dt a6(I4−I6) a6(43⋅21⋅2π−65⋅43⋅21⋅2π) 32πa6
6. 变上限积分函数与定积分不等式
例 37. 设 f ( x ) = ∫ 0 1 − x e t ( 2 − t ) d t f(x)=\displaystyle\int_0^{1-x}e^{t(2-t)}\,dt f(x)=∫01−xet(2−t)dt , 求 ∫ 0 1 f ( x ) d x \displaystyle\int_0^1f(x)\,dx ∫01f(x)dx
(1) 求导
f ′ ( x ) = − e ( 1 − x ) ( 1 + x ) f'(x)=-e^{(1-x)(1+x)} f′(x)=−e(1−x)(1+x)
(2) 积分
∫ 0 1 f ( x ) d x = x ⋅ f ( x ) ∣ 0 1 − ∫ 0 1 x f ′ ( x ) d x = 0 + ∫ 0 1 x ⋅ e 1 − x 2 d x = − 1 2 ∫ 0 1 e 1 − x 2 d ( 1 − x 2 ) = − 1 2 e 1 − x 2 ∣ 0 1 = 1 2 ( e − 1 ) \begin{aligned} \int_0^1f(x)\,dx=&\ x\cdot f(x)\bigg|_0^1-\int_0^1xf'(x)\,dx \\ =&\ 0+\int_0^1x\cdot e^{1-x^2}\,dx \\ =&\ -\frac12\int_0^1e^{1-x^2}\,d(1-x^2) \\ =&\ -\frac12e^{1-x^2}\bigg|_0^1 \\ =&\ \frac12(e-1) \end{aligned} ∫01f(x)dx===== x⋅f(x)∣∣∣∣01−∫01xf′(x)dx 0+∫01x⋅e1−x2dx −21∫01e1−x2d(1−x2) −21e1−x2∣∣∣∣01 21(e−1)
例 38. 设 f ( x ) = ∫ 1 x d t 1 + t 3 f(x)=\displaystyle\int_1^x\frac{dt}{\sqrt{1+t^3}} f(x)=∫1x1+t3 dt ,求 ∫ 0 1 x f ( x ) d x \displaystyle\int_0^1xf(x)\,dx ∫01xf(x)dx
(1) 求导
f ′ ( x ) = 1 1 + x 3 f'(x)=\frac{1}{\sqrt{1+x^3}} f′(x)=1+x3 1
(2) 积分
∫ 0 1 x f ( x ) d x = 1 2 ∫ 0 1 f ( x ) d ( x 2 ) = 1 2 x 2 f ( x ) ∣ 0 1 − 1 2 ∫ 0 1 x 2 f ′ ( x ) d x = 0 − 1 2 ∫ 0 1 x 2 ⋅ 1 1 + x 3 d x = − 1 6 ∫ 0 1 d ( 1 + x 3 ) 1 + x 3 = − 1 3 1 + x 3 ∣ 0 1 = 1 − 2 3 \begin{aligned} \int_0^1xf(x)\,dx =&\ \frac12\int_0^1f(x)\,d(x^2) \\ =&\ \frac12x^2f(x)\bigg|_0^1-\frac12\int_0^1x^2f'(x)\,dx \\ =&\ 0-\frac12\int_0^1x^2\cdot\frac{1}{\sqrt{1+x^3}}\,dx \\ =&\ -\frac16\int_0^1\frac{d(1+x^3)}{\sqrt{1+x^3}} \\ =&\ -\frac13\sqrt{1+x^3}\bigg|_0^1 \\ =&\ \frac{1-\sqrt{2}}3 \end{aligned} ∫01xf(x)dx====== 21∫01f(x)d(x2) 21x2f(x)∣∣∣∣01−21∫01x2f′(x)dx 0−21∫01x2⋅1+x3 1dx −61∫011+x3 d(1+x3) −311+x3 ∣∣∣∣01 31−2
标签:frac,int,积分,不定积分,ln,与定,dx,aligned,displaystyle 来源: https://blog.csdn.net/weixin_45449414/article/details/111826341