其他分享
首页 > 其他分享> > 损失函数

损失函数

作者:互联网

损失函数,也可叫做 目标函数、代价函数 等,其意义不是完全一致,但是大体相同,不必纠结概念

 

0-1 损失:Zero-one loss

预测与实际相等为 0,不相等为 1;

缺点:定义太过严格,比如预测为 0.99,实际为 1,显然预测没问题,但是上述损失为  1

应用:不常用

感知损失:Perceptron Loss

它是对 0-1 损失的改进,允许有一定的误差

预测与实际在误差范围内为 0,超过误差范围为 1 

应用:不常用 

 

 

铰链损失:Hinge loss

解决间隔最大化问题

y 为实际,y‘ 为预测;

在 SVM 中,y‘ 取值在 -1 到 1 之间,不鼓励 |y'| > 1,这意味着模型过度自信,让单个正确分类的样本距离分割线超过 1 时,yy‘ > 1,1 - yy‘ < 0,而 hinge loss 强制取 0,这意味着 负数并不会对模型的优化起到减小损失的作用,

这样做使得 SVM 更专注于整体的误差;

如果预测正确,损失为 0;

如果预测错误,yy‘ < 0,损失为 1-yy‘;

优点:健壮性好,噪声不敏感

缺点:缺乏很好的概率解释

应用:SVM 解决几何间隔最大化

在线性支持向量基中,loss 如下

作如下变形

loss 变成

 

 

对数损失:log 损失

log 损失的本质是对数似然函数;      【在交叉熵中有解释】

它包含了 cross-entropy loss 和 softmax loss;

它适用于 输出概率 的分类模型;

缺点:log 或者 exp 都是放大了错误,这样使得模型对噪声敏感

应用:逻辑回归,softmax 分类

交叉熵:cross-entropy loss

x 表示样本, y 表示预测, a 表示实际,n 为样本数

 

交叉熵的本质是 对数似然函数

p 为发生的概率,y 为发生 or 未发生,0 or 1;  【p 为实际,y 为预测】

应用:最常用的二分类损失函数

 

 

指数损失

如果预测正确,yf(x) 为正,-yf(x) < 0,loss 变小,exp(-yf(x)) < 1;

如果预测错误,yf(x) 为负,-yf(x) > 0,loss 变大,exp(-yf(x)) > 1;

加 exp 的作用是放大 错误;

缺点:log 或者 exp 都是放大了错误,这样使得模型对噪声敏感

应用:Adaboost

 

 

绝对值损失

也叫 L1 范数损失,L1 loss

应用:回归

均方差 

应用:最常用的回归损失函数

 

 

 

以上损失函数可视化如下图

 

 

 

参考资料:

https://www.cnblogs.com/lliuye/p/9549881.html

https://blog.csdn.net/zhangjunp3/article/details/80467350    这篇讲得比较深入

https://zhuanlan.zhihu.com/p/58883095

https://zhuanlan.zhihu.com/p/35027284

https://zhuanlan.zhihu.com/p/47202768

https://mp.weixin.qq.com/s/qWJaMTHNAh4cxEIhfpURDA

标签:loss,预测,损失,yf,https,函数
来源: https://www.cnblogs.com/yanshw/p/10721400.html