数学文化题
作者:互联网
前言
典例剖析
法1:以少御多,将无限项转化为有限项,再由多转少,这样便于思考和运算;可以假定\(n=4\),然后代入验证,选\(C\).
法2:写出新数列的通项公式\(a_k=\cfrac{1}{k}\cdot \cfrac{n}{2}\),注意通项公式不是\(a_n=\cfrac{1}{n}\cdot \cfrac{n}{2}\),
这样求和的数列的通项公式就是
\(k\ge 2\),\(a_{k-1}a_k=\cfrac{n^2}{4}\cfrac{1}{(k-1)k}=\cfrac{n^2}{4}(\cfrac{1}{k-1}-\cfrac{1}{k})\)
故\(a_1a_2+a_2a_3+a_3a_4+\cdots+a_{n-1}a_n\)
\(=\cfrac{n^2}{4}[(1-\cfrac{1}{2})+(\cfrac{1}{2}-\cfrac{1}{3})+(\cfrac{1}{3}-\cfrac{1}{4})+\cdots+(\cfrac{1}{k-1}-\cfrac{1}{k})]\)
\(=\cfrac{n^2}{4}(1-\cfrac{1}{n})=\cfrac{n(n-1)}{4}\).
标签:文化,数列,cdots,1a,cfrac,数学,通项,3a 来源: https://www.cnblogs.com/wanghai0666/p/12349637.html