其他分享
首页 > 其他分享> > AcWing 343. 排序(传递闭包)

AcWing 343. 排序(传递闭包)

作者:互联网

题干:

给定 n 个变量,m 个不等式。
不等式之间具有传递性,即若 A>B 且 B>C ,则 A>C。
判断这 m 个不等式是否有矛盾。
若存在矛盾,则求出 t 的最小值,满足仅用前 t 个不等式就能确定不等式之间存在矛盾。
若无矛盾,则判断这 m 个不等式是否能确定每一对变量之间的关系。
若能,则求出 t 的最小值,满足仅用前 t 个不等式就能确定每一对变量之间的大小关系。
输入格式
输入包含多组测试数据。
每组测试数据,第一行包含两个整数n和m。
接下来m行,每行包含一个不等式,不等式全部为小于关系。
当输入一行0时,表示输入终止。
输出格式
每组数据输出一个占一行的结果。
结果可能为下列三种之一:
1、”Sorted sequence determined after t relations: yyy…y.”,其中yyy…y是指升序排列的所有变量。
2、”Sorted sequence cannot be determined.”。
3、”Inconsistency found after t relations.”。
数据范围
2≤n≤26,变量只可能为大写字母A~Z。
矛盾和不确定,优先判断是否矛盾
在矛盾之前如果有成功的,算是成功

输入样例:
4 6
A<B
A<C
B<C
C<D
B<D
A<B
3 2
A<B
B<A
26 1
A<Z
0 0
输出样例:
Sorted sequence determined after 4 relations: ABCD.
Inconsistency found after 2 relations.
Sorted sequence cannot be determined.

思路:

根据题意>是可以传递的,而>是个二元关系,所以可以用传递闭包的思想,推出尽量多的关系。
规定x[i][j]=1表示i<j;x[i][j]=0表示未知
我们可以得到以下规则:
若x[i][k]和x[k][j]同时为1 => x[i][j]=1
若x[i][j]和x[j][i]同时为1 => 矛盾
若无法推出矛盾或已知才为未知
若所有的x[i][j]都为1(规定x[i][i]=1),则可确定顺序;x[i][j]将j的优先级增加,然后根据优先级降序输出
至于最少的不等式,可以在全部输入完成后,二分答案;或者每次输入后就建立联系,若此时满足条件则一定是最少次数。

#include <bits/stdc++.h>
using namespace std;
int x[30][30];
char ch[5];
struct stu
{
    int pos;
    int c;
}fir[30];
bool cmp(stu a,stu b)
{
    return a.c<b.c;
}

int main()
{
    int n,m;
    while(scanf("%d%d",&n,&m)!=EOF){
        int ans=1;
        for(int i=0;i<27;i++){
            fir[i].pos=i;
            fir[i].c=0;
        }
        if(n==0&&m==0)
            break;
        memset(x,0,sizeof(x));
        for(int i=0;i<n;i++)
            x[i][i]=1;
        for(int i=0;i<m;i++){
            scanf("%s",ch);
            x[ch[0]-'A'][ch[2]-'A']=1;
            for(int j=0;j<n;j++){
                for(int k=0;k<n;k++){
                    if(x[j][ch[0]-'A']&&x[ch[2]-'A'][k])
                        x[j][k]=1;
                }
            }
            int flag=0,flag1=1;
            for(int j=0;j<n-1;j++){
                for(int k=j+1;k<n;k++){
                    if(x[j][k]&&x[k][j]){
                        flag=1;
                        break;
                    }
                    else if(!x[j][k]&&!x[k][j]){
                        flag1=0;
                    }
                }
            }
            if(flag){
                printf("Inconsistency found after %d relations.\n",i+1);
                ans=0;
                for(i++;i<m;i++)
                    scanf("%s",ch);
                break;
            }
            if(flag1){
                printf("Sorted sequence determined after %d relations: ",i+1);
                for(int k=0;k<n-1;k++){
                    for(int j=k+1;j<n;j++){
                        if(x[k][j])
                            fir[j].c++;
                        else
                            fir[k].c++;
                    }
                }
                sort(fir,fir+n,cmp);
                for(int j=0;j<n;j++)
                    printf("%c",fir[j].pos+'A');
                printf(".\n");
                ans=0;
                for(i++;i<m;i++)
                    scanf("%s",ch);
                break;
            }
        }
        if(ans){
            printf("Sorted sequence cannot be determined.\n");
        }
    }
    return 0;
}

标签:闭包,不等式,sequence,矛盾,relations,343,Sorted,输入,AcWing
来源: https://blog.csdn.net/qq_42279796/article/details/101050524