其他分享
首页 > 其他分享> > 洛谷P4174 [NOI2006]最大获利

洛谷P4174 [NOI2006]最大获利

作者:互联网

题目:洛谷P4174 [NOI2006]最大获利

思路:

最大权闭合子图模型
对本题来说,可以理解为:
首先我们假设所有用户的收益都可以得到,把这些收益加起来,作为初始答案。
但是这些收益肯定不可能不建造中转站就全部得到,我们要么建造一些中转站,要么放弃一些用户。这些都会减少总收益,所以我们要设法让减少量最小。
按下述方法建图:在中转站和它能服务的用户之间连容量为inf的边。添加超级源汇点s、t,从s向所有中转站连边,容量为建造中转站的花费,从所有用户向t连边,容量为该用户收益。
计算出该图的最小割,表示的意义为:显然inf边不会被割掉。所以若割掉s到中转站的边,表示不建造这个中转站;若割掉用户到t的边,表示放弃该用户的收益。
因为是最小割,所以最后的结果最小,相当于让我们放弃的收益最少。
于是用最初的总收益减去最少要放弃的收益(最小割)就得到了答案。


Code:

#include <bits/stdc++.h>
using namespace std;
const int N=2e6+5,inf=0x3f3f3f3f;
int n,m,s,t,tot,ans,d[N];
int Top=1,ver[N],nxt[N],val[N],head[N];
inline void add(int u,int v,int w){
    ver[++Top]=v;val[Top]=w;nxt[Top]=head[u];head[u]=Top;
    ver[++Top]=u;val[Top]=0;nxt[Top]=head[v];head[v]=Top;
}
bool bfs(){
    for(int i=1;i<=tot;++i) d[i]=0;
    queue<int> q;
    q.push(s);
    d[s]=1;
    while(!q.empty()){
        int u=q.front();q.pop();
        for(int i=head[u];i;i=nxt[i]){
            int v=ver[i];
            if(val[i]&&!d[v]){
                d[v]=d[u]+1;
                if(v==t) return true;
                q.push(v);
            }
        }
    }
    return false;
}
int dfs(int u,int flow){
    if(u==t) return flow;
    int left=flow;
    for(int i=head[u];i&&left;i=nxt[i]){
        int v=ver[i];
        if(val[i]&&d[v]==d[u]+1){
            int res=dfs(v,min(left,val[i]));
            if(!res) d[v]=0;
            val[i]-=res;
            val[i^1]+=res;
            left-=res;
        }
    }
    return flow-left;
}
int main(){
    scanf("%d%d",&n,&m);
    tot=n+m;
    s=++tot;
    t=++tot;
    for(int i=1,w;i<=n;++i){
        scanf("%d",&w);
        add(s,i,w);
    }
    for(int i=1,a,b,c;i<=m;++i){
        scanf("%d%d%d",&a,&b,&c);
        add(a,n+i,inf);
        add(b,n+i,inf);
        add(n+i,t,c);
        ans+=c;
    }
    while(bfs()) ans-=dfs(s,inf);
    printf("%d",ans);
    return 0;
}

标签:head,洛谷,val,NOI2006,int,Top,P4174,ver,中转站
来源: https://www.cnblogs.com/yu-xing/p/11323095.html