sklearn-kmeans
作者:互联网
from sklearn.datasets import make_blobs from matplotlib import pyplot as plt from sklearn.cluster import KMeans X, y = make_blobs(n_samples=200, n_features=2, centers=4, cluster_std=1, center_box=(-10.0, 10.0), shuffle=True, random_state=1) # plt.figure(figsize=(6, 4), dpi=144) # plt.xticks(()) # plt.yticks(()) # plt.scatter(X[:, 0],X[:, 1], s=20, marker='o') # plt.show() n_cluster = 3 k_means = KMeans(n_clusters=n_cluster) k_means.fit(X) print("kmean: k={}, cost={}".format(n_cluster, int(k_means.score(X)))) labels = k_means.labels_ centers = k_means.cluster_centers_ markers = ['o', '^', '*'] colors = ['r', 'b', 'y'] plt.figure(figsize=(6, 4), dpi=144) plt.xticks(()) plt.yticks(()) for c in range(n_cluster): cluster = X[labels == c] plt.scatter(cluster[:, 0], cluster[:, 1], marker=markers[c], s=20, c=colors[c]) plt.scatter(centers[:, 0], centers[:, 1], marker='o', c='white', alpha=0.9, s=300) for i, c in enumerate(centers): plt.scatter(c[0], c[1], marker='$%d$' % i, s=50, c=colors[i]) plt.show()
标签:plt,means,kmeans,scatter,cluster,marker,centers,sklearn 来源: https://blog.csdn.net/qq_31723281/article/details/96732714