其他分享
首页 > 其他分享> > luogu P5342 [TJOI2019]甲苯先生的线段树

luogu P5342 [TJOI2019]甲苯先生的线段树

作者:互联网

传送门

你个好好的省选怎么可以出CF原题啊,你们这个题害人不浅啊,这样子出题像极了cxk,说到cxk,我又想起了他是NBA形象大使,跟我是西游文化大使一样一样的,今年下半年...

别说了,jinsaisannian

因为线段树树高是\(logn\)层的,所以第一问可以直接暴力做,后面记这个权值为\(n\).第二问的话,暴力是枚举路径最上面那个点以及下面的两个端点,不过可以改为枚举两边向下延伸的长度,记为\(l,r\),然后\((x,l,r)\)权值下界为\(x+2x+4x...+2lx+2(x+1)+4(x+1)...+2r(x+1)=(2^{l+1}+2^{r+1}-3)x+2^r-1\)
也就是两条链全往左延伸;对于\((x-1,l,r)\),他权值上界情况下,每个点的权值都是小于\((x,l,r)\)的权值下界情况的对应的点权值,所以对于一对\((l,r)\),\(x\)的权值范围是无交的,那么对于一个\(n\)和\((l,r)\),只有一个\(x\)有贡献,也就是\(\lfloor\frac{n-2^r+1}{2^{l+1}+2^{r+1}-3}\rfloor\).于是可以把\(n\)减去权值下界\((2^{l+1}+2^{r+1}-3)x+2^r-1\),那么只要考虑两条链形态对答案的影响了.以长度为\(l\)的链(左链)为例,可以发现有\(l-1\)个地方可以选择走左边或者右边,如果在从上到下第一个地方选择走右边,最后会多出来\(2^{l-1}-1\)的权值,在第二个地方选择走右边会多出来\(2^{l-2}-1\)的权值...\(r\)类似.现在问题变成枚举\((l,r)\),然后\(n\)减去下界,有两个长度分别为\(l-1,r-1\)的\(01\)串,在某个串第\(i\)位选\(1\)权值加上\(2^i-1\),问多少个确定每个位置\(0/1\)的方案,使得权值为\(n\).这个可以数位dp解决但是我不会qwq,还可以记忆化搜索,复杂度为\(O(d^4)-O(d^5)\) 复杂度也不会证qwq

谢罪代码

标签:...,luogu,可以,P5342,下界,枚举,权值,TJOI2019,复杂度
来源: https://www.cnblogs.com/smyjr/p/10841521.html