平面计算几何全家桶
作者:互联网
平面计算几何全家桶
点与向量
向量的线性运算
struct vec{
double x,y;
vec(){}
vec(double _x,double _y){x=_x;y=_y;}
friend vec operator + (vec p,vec q){return vec(p.x+q.x,p.y+q.y);}
friend vec operator - (vec p,vec q){return vec(p.x-q.x,p.y-q.y);}
friend vec operator * (vec p,double k){return vec(p.x*k,p.y*k);}
friend vec operator / (vec p,double k){return p*(1.0/k);}
};
本质上点和向量用的是同一个类型,但还是定义两个名字清晰一些
typedef vec point;
点+向量=点
向量旋转
点积
\[\bm{a} \cdot \bm{b}= |\bm{a}||\bm{b}|\cos <\bm{a},\bm{b}>=x_1x_2+y_1y_2 \]double dot(vec p,vec q){return p.x*q.x+p.y*q.y;}
double dist(point P,point Q){return sqrt(dot(P-Q,P-Q));}
double dist2(point P,point Q){return dot(P-Q,P-Q);}//距离的平方
\(|\bm{a}|^2=\bm{a} \cdot \bm{a}\),因此用点积表示向量长度与两点距离
用点积可求向量投影
叉积
\[\bm{a} \times \bm{b}= |\bm{a}||\bm{b}|\sin <\bm{a},\bm{b}>=x_1y_2-x_2y_1 \]注意叉积不满足交换律\(\bm{a} \times \bm{b} = - (\bm{b} \times \bm{a})\)
二维向量叉积的结果是一个实数,其几何意义是\(\bm{a} ,\bm{b}\)围成的平行四边形的面积(有符号)。符号的判定可用右手定则:若 P × Q > 0, 则P在Q的顺时针方向(拇指向上)。 若 P × Q < 0, 则P在Q的逆时针方向。
double cross(vec p,vec q){return p.x*q.y-p.y*q.x;}
直线
直线方程
在高中我们学习了五种直线方程的表示方法,现在介绍计算几何中常用的方法:
\(Q=P+ t \bm{v}\)
其中\(P\)为直线上一点,\(\bm{v}\)为直线的方向向量,\(Q\)为直线上任意一点,\(t\)为参数。 给出\(P,\bm{v}\),则直线唯一确定
其实直线的参数方程\(\begin{cases} x=x_0+t\cos \theta \\ y=y_0+t\sin \theta \end{cases}\)就是这种表示法的特殊情况
struct line{
point P;vec v;//P+tv
line(){}
line(point _P,vec _v){P=_P;v=_v;}
};
直线的交点
如何用点向式方程求直线的交点?
设两直线分别为 \((P,\bm{v}),(Q,\bm{m})\) ,交点\(A = P + t \bm{v}\).
又因为\(A\) 在另一条直线上, 故\(\vec{QA}\times \bm{m}=0\)
\((P + t \bm{v} - Q) \times \bm{m}=0\)
叉积关于向量加法运算具有分配律,展开后得
\(t (\bm{v} \times \bm{m}) = (Q-P)\times \bm{m}\)
解的\(t = \frac{(Q-P)\times \bm{m}}{\bm{v} \times \bm{m}}\)
故 $$A=P+\frac{(Q-P)\times \bm{m}}{\bm{v} \times \bm{m}}\bm{v}$$
point getInterSec(line l,line m){
return l.P+l.v*(cross(m.P-l.P,m.v)/cross(l.v,m.v)); //((P-Q)+tv)m=0,解出t,交点为P+tv
}
多边形
凸包
用Graham算法(本质是单调栈)
void convexHull(point *a,int n){
static point s[MAXN+5];
for(int i=1;i<=n;i++) if(a[i].x<a[1].x||(a[i].x==a[1].x&&a[i].y<a[1].y)) swap(a[i],a[1]);
sort(a+2,a+1+n,[=](point p,point q)->bool{//极角排序
double ang=cross(p-a[1],q-a[1]);
if(fabs(ang)<eps) return dist2(p,a[1])<dist2(q,a[1]);
else return ang>eps;
});
int top=0;
for(int i=1;i<=n;i++){//单调栈
while(top>1&&cross(s[top]-s[top-1],a[i]-s[top-1])<=eps) top--;
s[++top]=a[i];
}
}
标签:return,point,double,bm,全家,times,vec,几何,平面 来源: https://www.cnblogs.com/birchtree/p/16553802.html