其他分享
首页 > 其他分享> > 【考试总结】2022-08-02

【考试总结】2022-08-02

作者:互联网

西克

找到满足 \(x\) 的祖先 \(z\) 中满足 \(a_z=b_x\) 的中最靠下的一个。那么正向树上倍增可以求出来 \(Qx\) 到 \(\rm LCA(Qx,Qy)\) 的结果。剩下半边可以一个一个重链跳。在每条重链上先找到第一个 \(a_p\) 等于手上颜色的 \(p\)。预处理一个反向的倍增,跳到下一条重链的接口处

\(\Theta(n\log^2n)\)

尼特

求出来所有串的最大匹配之和除以总方案数

设 \(f_{i,j}\) 表示前 \(i\) 个字符第 \(i\) 个删掉,且和最大匹配差了 \(j\) 的方案数。同时设 \(g_{i,j}\) 表示在相同条件下前 \(i\) 个数字的最大匹配数之和。

转移需要分 \(S_{i}=S_{i+1}\) 和 \(S_{i}\neq S_{i+1}\) 讨论。不难发现 \(S_i\) 具体值不重要,于是都可以叠到一起做。或者说能快速幂,具体而言:

前者转移统一移后做,第二部分转移写乘 \(GF\) 之后可以短多项式快速幂得到 \(G\) 。前者是等比数列求和。

苯为

长度为 \(n\) 的环染 \(k\) 中颜色的方案数是 \((k-1)^n+(-1)^{n}(k-1)\)

这题本身是求出来树上长度为 \(i\) 的链的数量,将它们连成长度为 \((A+1)i\) 的环染色,剩下的点染 \((k-1)\) 种颜色。不过这个过程相当于给边带了权,那么设 \(f_{i}\) 表示 \(i\) 子树中所有到 \(i\) 的链的权值总和,在 \(\rm LCA\) 处合并两份权值即可。

标签:02,匹配,最大,08,2022,权值,重链,转移,neq
来源: https://www.cnblogs.com/yspm/p/TestReview20220802.html