其他分享
首页 > 其他分享> > 关于毛毛虫剖分

关于毛毛虫剖分

作者:互联网

毛毛虫剖分

一种由重链剖分推广而成的树上结点重标号方法,支持 修改/查询 一只毛毛虫的信息,并且可以对毛毛虫的身体和足分别 修改/查询 不同信息 。

可以用来解决一些大力树剖也可以解决的问题。

一些定义:

重标号方法:

重标号性质:

借此我们可以很容易地求维护每条毛毛虫的信息。

同时也能顺便维护重链链分的所有信息以及子树的所有信息(一棵子树至多剖分为三个不交区间:重链区间、邻接轻点区间、邻接轻子树区间),复杂度与重链剖分完全一样。

例题:

[NOI2021] 轻重边

点击查看代码
#include <bits/stdc++.h>
using namespace std;
int T;
int n, m;
int ver[200005], ne[200005], head[100005], tot;
inline void link(int x, int y) {
    ver[++tot] = y;
    ne[tot] = head[x];
    head[x] = tot;
}
int siz[100005], son[100005], fa[100005], dep[100005];
void dfs1(int x, int fi) {
    siz[x] = 1;
    fa[x] = fi;
    dep[x] = dep[fi] + 1;
    for (int i = head[x]; i; i = ne[i]) {
        int u = ver[i];
        if (u == fi) continue;
        dfs1(u, x);
        siz[x] += siz[u];
        if (siz[u] > siz[son[x]]) son[x] = u;
    }
}
int top[100005];
int dfn[100005], cnt, lein[100005], leout[100005], alout[100005], subin[100005], subout[100005];
void cover(int x) {
    lein[x] = cnt + 1;
    for (int i = head[x]; i; i = ne[i]) {
        int u = ver[i];
        if (u == fa[x] || u == son[x]) continue;
        dfn[u] = ++cnt;
    }
    leout[x] = cnt;
    if (son[x]) cover(son[x]);
    alout[x] = cnt;
}
void dfs2(int x, int fi) {
    top[x] = fi;
    if (!dfn[x]) dfn[x] = ++cnt;
    if (x == top[x]) cover(x);
    subin[x] = cnt + 1;
    if (son[x]) dfs2(son[x], fi);
    for (int i = head[x]; i; i = ne[i]) {
        int u = ver[i];
        if (u == fa[x] || u == son[x]) continue;
        dfs2(u, u);
    }
    subout[x] = cnt;
}
int tree[400005], lazy[400005];
void build(int l = 1, int r = n, int i = 1) {
    tree[i] = 0;
    lazy[i] = -1;
    if (l == r) return ;
    int mid = (l + r) >> 1;
    build(l, mid, i << 1);
    build(mid + 1, r, i << 1 | 1);
}
inline void push(int i, int l, int r) {
    int mid = (l + r) >> 1;
    tree[i << 1] = lazy[i] * (mid - l + 1);
    lazy[i << 1] = lazy[i];
    tree[i << 1 | 1] = lazy[i] * (r - mid);
    lazy[i << 1 | 1] = lazy[i];
    lazy[i] = -1;
}
void update(int fr, int to, int v, int l = 1, int r = n, int i = 1) {
    if (fr > r || to < l) return ;
    if (fr <= l && to >= r) {
        tree[i] = (r - l + 1) * v;
        lazy[i] = v;
        return ;
    }
    if (~lazy[i]) push(i, l, r);
    int mid = (l + r) >> 1;
    update(fr, to, v, l, mid, i << 1);
    update(fr, to, v, mid + 1, r, i << 1 | 1);
    tree[i] = tree[i << 1] + tree[i << 1 | 1];
}
inline void lca(int x, int y) {
    vector<int> vec;
    while (top[x] != top[y]) {
        if (dep[top[x]] < dep[top[y]]) swap(x, y);
        update(lein[top[x]], leout[x], 0);
        update(dfn[son[x]], dfn[son[x]], 0);
        if (x != top[x]) update(dfn[son[top[x]]], dfn[x], 1);
        vec.push_back(top[x]);
        x = fa[top[x]];
    }
    if (dep[x] < dep[y]) swap(x, y);
    update(lein[y], leout[x], 0);
    update(dfn[y], dfn[y], 0);
    update(dfn[son[x]], dfn[son[x]], 0);
    if (x != y) update(dfn[son[y]], dfn[x], 1);
    for (auto it : vec) update(dfn[it], dfn[it], 1);
}
int query(int fr, int to, int l = 1, int r = n, int i = 1) {
    if (fr > r || to < l) return 0;
    if (fr <= l && to >= r) return tree[i];
    if (~lazy[i]) push(i, l, r);
    int mid = (l + r) >> 1;
    return query(fr, to, l, mid, i << 1) + query(fr, to, mid + 1, r, i << 1 | 1);
}
inline int Query(int x, int y) {
    int res = 0;
    while (top[x] != top[y]) {
        if (dep[top[x]] < dep[top[y]]) swap(x, y);
        if (top[x] != x) res += query(dfn[son[top[x]]], dfn[x]);
        res += query(dfn[top[x]], dfn[top[x]]);
        x = fa[top[x]];
    }
    if (dep[x] < dep[y]) swap(x, y);
    if (x != y) res += query(dfn[son[y]], dfn[x]);
    return res;
}
inline void clear() {
    for (int i = 1; i <= n; i++) head[i] = 0;
    tot = 0;
    for (int i = 1; i <= n; i++) siz[i] = 0;
    for (int i = 1; i <= n; i++) son[i] = 0;
    for (int i = 1; i <= n; i++) dfn[i] = 0;
    cnt = 0;
    build();
}
inline void solve() {
    scanf("%d%d", &n, &m);
    clear();
    for (int i = 1; i < n; i++) {
        int x, y;
        scanf("%d%d", &x, &y);
        link(x, y);
        link(y, x);
    }
    dfs1(1, 1);
    dfs2(1, 1);
    while (m--) {
        int op, x, y;
        scanf("%d%d%d", &op, &x, &y);
        if (op == 1) lca(x, y);
        else printf("%d\n", Query(x, y));
    }

}
int main() {
    freopen("edge.in", "r", stdin);
    freopen("edge.out", "w", stdout);
    scanf("%d", &T);
    while (T--) solve();
    return 0;
}


标签:剖分,int,top,update,son,100005,dfn,关于,毛毛虫
来源: https://www.cnblogs.com/A-Quark/p/16435243.html