其他分享
首页 > 其他分享> > 亿级别大表拆分

亿级别大表拆分

作者:互联网

笔者是在两年前接手公司的财务系统的开发和维护工作。在系统移交的初期,笔者和团队就发现,系统内有一张5000W+的大表。跟踪代码发现,该表是用于存储资金流水的表格,关联着众多功能点,同时也有众多的下游系统在使用这张表的数据。进一步的观察发现,这张表还在以每月600W+的数据持续增长,也就是说,不超过半年,这张表会增长到1个亿!

 

这个数据量,对于mysql数据库来说是绝对无法继续维护的了,因此在接手系统两个月后,我们便开起了大表拆分的专项工作。(两个月时间实际上主要用来熟悉系统、消化堆积需求了)

拆表前系统状态

拆表的目标

难点分析

整体过程

绘图3.png

具体细节

分表中间件调研

分表插件:采用sharding-jdbc作为分表插件。其优势如下:1、支持多种分片策略,自动识别=或in判断具体在哪张分表里。2、轻量级,作为maven依赖引入即可,对业务的侵入性极低。

为提升查询速度,在整个项目的初期,团队成员考虑引入ES存储流水以提升查询速度。经过与ES维护团队的两轮讨论,发现公司提供的ES服务对于我们的业务场景并不匹配(见表),经过反复考量,最终我们放弃了引入ES的计划,直接从数据库查询数据,采用每张表设置一个查询线程的方式提升查询效率。

技术方案 开发成本 弊端
sharding-jdbc+es es 数据库+es 1.向sharding数据源中写数据,向es推送数据2.针对查询需要开发从es读取数据的api 1.es针对资金特有的多字段匹配搜索支持的不是很好2.es 支持每次返回的条数有限,个别大批量查询的功能无法支持3.es不提供特定地集群存储资金流水数据4.es支持分页查询效果不好,有可能比使用数据库查询速度更慢
sharding-jdbc 数据库 数据库 1.向sharding数据源和原有数据源中写数据2.根据查询条件判断从sharding数据源读取数据还是从原有数据源读取数据 1.资金业务场景下sharding支持分页查询不够友好,需要自己实现分页查询逻辑2.sharding需要自己定义数据源,涉及到多数据源事务处理问题

分表依据的选择

分表的方式有很多种,有纵向分表,有横向分表,有分为固定的几个表存储然后取模进行表拆分等等。总的来说,适合我们具体业务的分表方式只有横向分表。因为对于资金流水这种特殊数据来说,是不能清理数据的,那么纵向分表和拆成固定的几个表都不能解决单表数据无限膨胀的问题。而横向分表,可以把每张表的数据量恒定,到一定时间后可以进行财务数据归档。

分表的依据一般都是根据表的某个或者某几个字段进行拆分,最终其实是对数据和业务分析综合出来的结果。总的来说,原则有这几个:

综合分析我们的数据以及业务需要,“交易时间”这个分表依据就呼之欲出了。首先,这个字段作为流水最重要的字段之一一定会出现;第二,如果按照交易月份进行拆表,每张表大概也就是600W-700W的数据;最后,有70%的查询都附带“交易时间”作为查询条件。

技术难点

  1. 多数据源事务问题

sharding-jdbc在使用的时候是需要用自己的独立数据源的,那么就难免出现多数据源事务问题。这个我们通过自定义注解,自定义切面开启事务,通过方法栈逐层回滚or提交的方式解决的。出于保密原则,具体代码细节不再展开。

  1. 多表的分页问题

拆表一定会引起分页查询的难度增加。由于各个表查出来的数据量不等,原始的sql语句limit不再适用,需要设计一个新方法便捷的获取分页信息。在此介绍一个分页的思路供大家参考(团队共同的成果,笔者不敢私自占有):

综合考虑业务实际与开发的复杂程度,项目团队决定在出现跨表查询的情况下,每一张表采用一个线程进行查询,以提高查询效率。这个方案的难点在于分页规则的转换。例如,页面传入的offset和pageSize分别为8和20。各分表中符合条件的数量分别为10,10,50。那么我们需要将总的分页条件转化为三个分表各自的分页条件,如图

分页.png

通过上图可以看到,大分页条件(offset=8,pageSize=20),转换为(offset=8,pageSize=2),(offset=0.pageSize=10),(offset=0,pageSize=8)三个条件。整个计算过程如下:

1)      多线程查询各个分表中满足条件的数据数量

2)      将各个表数量按照分表的先后顺序累加,形成图 8的数轴

3)      判断第一条数据和最后一条数据所在的表

4)      除第一条和最后一条数据所在表外,其他表offset=0,pageSize=总数量

5)      计算第一条数据的offset,pageSize

计算最后一条数据的pageSize,同时将该表查询条件的offset设置为0

数据迁移方案

在数据迁移前,团队讨论过两套迁移方案:1)请DBA迁移数据;2)手写代码迁移数据,他们各有自己的优缺点:

迁移方案 方案详细描述 优点 缺点
dba迁移数据 1.迁移数据期间将流量切换至master库2.采用insert into tableA select * from tableB的脚本迁移数据 1.迁移过程遇到问题可以找dba协助 1.访问流量迁移至master库,有可能出现访问数据库网络等未知问题2.主从同步延迟很大,会影响到整个集群3.迁移速度过慢,因为涉及到扫描全表不走索引的情况
代码迁移数据 1.通过接口调用的方式来迁移数据2.采用select * from table where id > ? limit ?的脚本查询数据,逐条插入数据库中 1.迁移数据速度可控2.主从同步延迟不明显3.可提前将历史数据进行迁移 1.容易出现大事务问题2.容易出现操作失误3.迁移的历史数据出现前后不一致的情况4.迁移持续时间较长,实际操作中整个迁移过程长达两个星期

综合考虑时间成本和对线上数据库的影响,团队决定采用两种方案结合的方式:交易时间为三个月前的冷数据,由于更新几率不大,采用代码的方式迁移,人为控制每次迁移数量,少量多次,蚂蚁搬家;交易时间为三个月内的热数据,由于会在上线前频繁出现更新操作,则在上线前停止写操作,而后由DBA整体迁移。这样将时间成本平摊到平时,上线前只有约2个小时左右迁移数据时系统无法使用。同时,除了最后一次DBA迁移数据外,能够人为控制每次迁移的数据量,整体避免数据库实例级别的高延迟。

整体上线流程

为保证新表拆分功能的稳定性和大表下线的稳定,团队将整个项目分为三个阶段:

第一阶段:建立分表,大表数据迁移分表,线上数据新表老表双写,所有查询走分表

(验证观察)

第二阶段:停止写老数据表,其他业务直连数据库改为资金提供对外接口

(验证观察)

第三阶段:大表下线

总结

说点儿题外话

为啥说想说点儿题外话呢,主要是对这次延续了5个多月的项目有感而发。项目进行过程中,难免会与其他系统的维护团队有工作上的交集,有需要其他团队配合的地方。这个时候非常考验程序员的沟通能力,最优秀的程序员能够通过话术把对方拉到自己的阵线当中,让对方感到这项工作对自己也是有好处的。这样能够让对方心甘情愿的配合你的工作,达到双赢的目的。如果程序设计和学习能力是程序员的硬实力,那沟通技巧就是程序员的软实力,硬实力能够保障你的下线,而决定上线的恰恰是软实力。因此很多程序员不注重沟通技巧的培养,其实是相当于瘸腿的,毕竟现在凭单打独斗是不大可能做出事情的。

另外,至少对于我们单位来说,对后端程序员的综合素质其实要求最高。后端程序员集业务、技术于一身。需要有比较强的业务把控能力,还要有过硬的技术素质。同时,大多数工作的主owner是后端,一般都是后端程序员把控前端、后端、QA的开发节奏,协调好各个时间点,做好风险反馈。这就要求后端程序员既要懂业务,还要懂技术,还需要有一定的管理能力。这其实对人的锻炼还是很可观的。


作者:天机术士
链接:https://juejin.cn/post/7078228053700116493

标签:级别,查询,sharding,拆分,数据源,分表,迁移,数据,大表
来源: https://www.cnblogs.com/oodcloud/p/16276642.html