Educational Codeforces Round 118 (Rated for Div. 2) D. MEX Sequences
作者:互联网
\(DP\)真的太难了啊!!
首先考虑到\(f(i, s)\)表示,从前\(i\)个数中选,最后一个数为\(a_i\),且\(MEX(a_1,....,a_i) = \left\{ \begin{aligned} a_{i} - 1 (s = 0) \\ a_{i} + 1(s = 1)\end{aligned} \right.\),因为有\(a_i\)的存在,那么\(MEX\)只能取这两种值。
列出方程:
但是这样需要\(O(n ^ 2)\)复杂度。
而发现给定的\(a_i\)值很小,因此可以直接把这个作为状态。
\(f(j, s)\)表示从前i个数中选,\(MEX(...a_k) = j\),且最后一个数为\(a_k\),\(a_k = \left\{ \begin{aligned} j - 1 (s = 0) \\ j + 1(s = 1)\end{aligned} \right.\)的方案数,那么当前x影响的只有\(f(x + 1, s)\)与\(f(x - 1, s)\)这两种方案,这样复杂度就降为了\(O(n * 2)\)
下面进行分类讨论:
1. 若\(MEX = x + 1\),最后一个数为\(x\)的方案。
1.1 前\(i - 1\)个数\(MEX = x + 1\),最后一个数为\(x\)的方案。
1.2 前\(i - 1\)个数\(MEX = x + 1\),最后一个数为\(x\),再添加一个\(x\)的方案。
1.3 前\(i - 1\)个数\(MEX = x\),最后一个数为\(x - 1\),再添加一个\(x\)的方案。
那么方程如下:
2. 若\(MEX = x + 1\),最后一个数为\(x + 2\)的方案。
2.1 前\(i - 1\)个数\(MEX = x + 1\),最后一个数为\(x + 2\)的方案。
2.2 前\(i - 1\)个数\(MEX = x + 1\),最后一个数为\(x + 2\),再添加一个\(x\)的方案。
那么方程如下:
3. 若\(MEX = x - 1\),最后一个数为\(x\)的方案。
3.1 前\(i - 1\)个数\(MEX = x - 1\),最后一个数为\(x\)的方案。
3.2 前\(i - 1\)个数\(MEX = x - 1\),最后一个数为\(x\),再添加一个\(x\)的方案。
3.3 前\(i - 1\)个数\(MEX = x - 1\),最后一个数为\(x - 2\),再添加一个\(x\)的方案。
那么方程如下:
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
const int Mod = 998244353;
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
int t;
cin >> t;
while (t--) {
//memset(f, 0, sizeof f);
int n;
cin >> n;
vector<int> a(n);
for (int i = 0; i < n; i++) {
cin >> a[i];
}
vector<vector<ll>> f(n + 2, vector<ll>(4, 0));
f[0][0] = 1;
//f[0][1] = ;
for (int i = 0; i < n; i++) {
int x = a[i];
f[x + 1][0] = (f[x + 1][0] * 2 % Mod + f[x][0]) % Mod;
f[x + 1][1] = f[x + 1][1] * 2 % Mod;
if (x > 0) {
f[x - 1][1] = (f[x - 1][1] * 2 % Mod + f[x - 1][0]) % Mod;
}
}
ll res = 0;
for (int i = 0; i <= n; i++) {
res = (res + f[i][0] + f[i][1]) % Mod;
}
cout << (res - 1 + Mod) % Mod << "\n";
}
return 0;
}
标签:方案,Educational,Rated,数为,个数,int,MEX,Mod 来源: https://www.cnblogs.com/ZhengLijie/p/16225725.html