对数运算例题-02
作者:互联网
\begin{array}{c}
解:(\lg{5})^2+\lg{2} \cdot \lg{50}\\
\\
(\lg{5})^2+\lg{2} \cdot \lg{(5\cdot10)}\\
(\lg{5})^2+\lg{2} \cdot \lg{5}+\lg{2}\cdot\lg{10}\\
\lg{5}\cdot\lg{5}+\lg{2} \cdot \lg{5}+\lg{2}\\
\lg{5}(\lg{5}+\lg{2} + \frac{\lg{2}}{\lg{5}})\\
\lg{5}[\lg{(5\cdot2)} + \frac{\lg{2}}{\lg{5}}]\\
\lg{5}(1 + \frac{\lg{2}}{\lg{5}})\\
\lg{5} + \lg{5} \cdot \frac{\lg{2}}{\lg{5}}\\
\lg{5}+\lg{2}\\
\\
\therefore result = 1
\end{array}
标签:02,lg,frac,cdot,对数,array,例题 来源: https://www.cnblogs.com/Preparing/p/16084908.html