其他分享
首页 > 其他分享> > Math-Based Approach on Neural Networks

Math-Based Approach on Neural Networks

作者:互联网

自变量(Independent variable)一词来自数学。也叫实验刺激(inputs)。——qianxin

Math-Based Approach on Neural Networks

Perceptrons

algebraic terms

with inputs \(x_1, x_2, ...\), weights \(w_1, w_2, ...\), and bias \(b\) is

\[output=\left\{\begin{matrix} 0\ if\ \sum_{j}w_jx_j \le thresold \\ 1\ if\ \sum_{j}w_jx_j \gt thresold \end{matrix}\right. \]

dot product with bias as thresold

\[output=\left\{\begin{matrix} 0\ if\ w\cdot x+b \le 0 \\ 1\ if\ w\cdot x+b \gt 0 \end{matrix}\right. \]

Sigmoid Neuron

Sigmoid Function

\[\sigma(z) \equiv \frac{1}{1+e^{-z}} \]

with inputs \(x_1, x_2, ...\), weights \(w_1, w_2, ...\), and bias \(b\) is

\[output \equiv \sigma(z) \equiv \frac{1}{1+e^{-\sum_{j}w_jx_j-b}} \]

\(\Delta output\)

\[\Delta{output}\approx \sum_{j}\frac{\partial output}{\partial w_j}\Delta{w_j}+\frac{\partial output}{\partial b}\Delta{b} \]

Gradient descent

Cost function

In this formula, \(y(x) \equiv output\),

\[C(w,b) \equiv \frac{1}{2n}\sum_{x}||y(x)-b||^2 \]

ChangeLog

标签:Based,matrix,sum,frac,Delta,output,Approach,Networks,equiv
来源: https://www.cnblogs.com/qianxinn/p/15740215.html