LG P2839 [国家集训队]middle
作者:互联网
\(\text{Solution}\)
不考虑起点区间和终点区间的限制,求区间中位数
可以二分中位数,大于等于中位数的位置赋为 \(1\),小于的位置赋 \(-1\)
当区间和大于等于 \(0\) 时此数才可能为中位数
因为有多个询问,但中位数数值只可能有 \(n\) 个
所以预处理时枚举当前中位数,处理出序列此时区间和的情况,线段树即可
但一棵线段树空间是 \(O(n log n)\) 的,\(n\) 棵不可行
注意到中位数 \(m\) 到 \(m+1\) 时只有值为 \(m\) 的位置从 \(1\) 变到了 \(-1\),其他都一样
启示我们可以用主席树维护,于是这个问题就解决了
回到本题,仍旧预处理并且二分答案
起点区间和终点区间夹的区间是必选的,取出区间和即可
起点和终点待定,确定某个起点后,此起点到起点区间右端点的数都要选,终点同理,即取后缀和前缀
那么在二分中位数的情况下,前缀和后缀越大越好
维护区间和时顺便维护区间最大前后缀即可
\(\text{Code}\)
#include <cstdio>
#include <algorithm>
#define re register
using namespace std;
const int N = 20005, INF = N * 10;
int n, m, q[4], rt[N], size;
struct nod{int v, id;}a[N];
inline bool cmp(nod a, nod b){return a.v < b.v;}
struct node{int sum, lx, rx;};
struct tree{int ls, rs; node t;}seg[N * 61];
inline node operator + (const node &a, const node &b)
{
return node{a.sum + b.sum, max(a.lx, a.sum + b.lx), max(b.rx, b.sum + a.rx)};
}
void update(int &p, int pre, int l, int r, int x, int v)
{
p = ++size, seg[p] = seg[pre];
if (l == r)
{
seg[p].t.sum += v, seg[p].t.lx += v, seg[p].t.rx += v;
return;
}
int mid = l + r >> 1;
if (x <= mid) update(seg[p].ls, seg[pre].ls, l, mid, x, v);
else update(seg[p].rs, seg[pre].rs, mid + 1, r, x, v);
seg[p].t = seg[seg[p].ls].t + seg[seg[p].rs].t;
}
node query(int p, int l, int r, int tl, int tr)
{
if (tl > r || tr < l) return node{0, -INF, -INF};
if (tl <= l && r <= tr) return seg[p].t;
int mid = l + r >> 1; node res = {0, -INF, -INF};
if (tl <= mid) res = query(seg[p].ls, l, mid, tl, tr);
if (tr > mid) res = res + query(seg[p].rs, mid + 1, r, tl, tr);
return res;
}
inline int check(int mid)
{
int res = 0;
if (q[1] + 2 <= q[2]) res = query(rt[mid], 1, n, q[1] + 1, q[2] - 1).sum;
res += query(rt[mid], 1, n, q[0], q[1]).rx + query(rt[mid], 1, n, q[2], q[3]).lx;
return res >= 0;
}
int main()
{
freopen("LG2839.in", "r", stdin), freopen("LG2839.out", "w", stdout);
scanf("%d", &n);
for(re int i = 1; i <= n; i++) scanf("%d", &a[i].v), a[i].id = i;
sort(a + 1, a + n + 1, cmp);
for(re int i = 1; i <= n; i++) update(rt[1], rt[1], 1, n, i, 1);
for(re int i = 2; i <= n; i++) update(rt[i], rt[i - 1], 1, n, a[i - 1].id, -2);
scanf("%d", &m);
for(int l, r, mid, ans, lst = 0; m; --m)
{
for(int i = 0; i < 4; i++) scanf("%d", &q[i]), q[i] = (q[i] + lst) % n + 1;
sort(q, q + 4), l = 1, r = n, ans = 0;
while (l <= r)
{
mid = l + r >> 1;
if (check(mid)) ans = mid, l = mid + 1;
else r = mid - 1;
}
printf("%d\n", lst = a[ans].v);
}
}
标签:node,LG,int,mid,中位数,seg,middle,区间,国家集训队 来源: https://www.cnblogs.com/leiyuanze/p/15548332.html