其他分享
首页 > 其他分享> > OpenCV 函数学习14-图像与标量相加(cv2.add)

OpenCV 函数学习14-图像与标量相加(cv2.add)

作者:互联网

14. 图像与标量相加(cv2.add)

函数 cv2.add() 用于图像的加法运算。

函数说明:

cv2.add(src1, src2 [, dst[, mask[, dtype]]) → dst

函数 cv2.add() 对两张相同大小和类型的图像进行加法运算,或对一张图像与一个标量进行加法运算。

对一张图像与一个标量相加时,则将图像所有像素的各通道值分别与标量的各通道值相加。

参数说明:

注意事项:

  1. OpenCV 加法和 numpy 加法之间有区别:cv2.add() 是饱和运算(相加后如大于 255 则结果为 255),而 Numpy 加法是模运算。
  2. 使用 cv2.add() 函数对两张图片相加时,图片的大小和类型(通道数)必须相同。
  3. 使用 cv2.add() 函数对一张图像与一个标量相加,标量是指一个 1x3 的 numpy 数组,相加后图像整体发白。

基本例程:1.23 图像与标量相加

# 1.23 图像的加法 (与标量相加)
    img1 = cv2.imread("../images/imgB1.jpg")  # 读取彩色图像(BGR)
    img2 = cv2.imread("../images/imgB3.jpg")  # 读取彩色图像(BGR)

    Value = 100  # 常数
    # Scalar = np.array([[50., 100., 150.]])  # 标量
    Scalar = np.ones((1, 3), dtype="float") * Value  # 标量
    imgAddV = cv2.add(img1, Value)  # OpenCV 加法: 图像 + 常数
    imgAddS = cv2.add(img1, Scalar)  # OpenCV 加法: 图像 + 标量

    print("Shape of scalar", Scalar)
    for i in range(1, 6):
        x, y = i*10, i*10
        print("(x,y)={},{}, img1:{}, imgAddV:{}, imgAddS:{}"
              .format(x,y,img1[x,y],imgAddV[x,y],imgAddS[x,y]))

    plt.subplot(131), plt.title("1. img1"), plt.axis('off')
    plt.imshow(cv2.cvtColor(img1, cv2.COLOR_BGR2RGB))  # 显示 img1(RGB)
    plt.subplot(132), plt.title("2. img + constant"), plt.axis('off')
    plt.imshow(cv2.cvtColor(imgAddV, cv2.COLOR_BGR2RGB))  # 显示 imgAddV(RGB)
    plt.subplot(133), plt.title("3. img + scalar"), plt.axis('off')
    plt.imshow(cv2.cvtColor(imgAddS, cv2.COLOR_BGR2RGB))  # 显示 imgAddS(RGB)
    plt.show()

例程说明 1.23:

本例程运行结果如下。

Shape of scalar [[150. 150. 150.]]
(x,y)=10,10, img1:[ 9  9 69], imgAddV:[159   9  69], imgAddS:[159 159 219]
(x,y)=20,20, img1:[  3 252 255], imgAddV:[153 252 255], imgAddS:[153 255 255]
(x,y)=30,30, img1:[  1 255 254], imgAddV:[151 255 254], imgAddS:[151 255 255]
(x,y)=40,40, img1:[  1 255 254], imgAddV:[151 255 254], imgAddS:[151 255 255]
(x,y)=50,50, img1:[  1 255 255], imgAddV:[151 255 255], imgAddS:[151 255 255]

在这里插入图片描述



标签:plt,cv2,OpenCV,add,图像,标量,img1,255
来源: https://blog.csdn.net/youcans/article/details/121191469