其他分享
首页 > 其他分享> > luogu P1117 [NOI2016]优秀的拆分

luogu P1117 [NOI2016]优秀的拆分

作者:互联网

传送门

这题居然暴力有95,,,

先考虑暴力,\(AABB\)显然可以看成两个相邻的\(AA\),记\(a_i\)为以i为结尾的\(AA\)个数,\(b_i\)为以i为结尾的\(AA\)个数,可以直接哈希统计每一种,答案为\(\sum_{i=1}^{n-1}a_ib_{i+1}\)

然后考虑优化统计答案,首先枚举一种长度\(l\in[1,\lfloor\frac{n}{2}\rfloor]\),然后每l位置放一个关键点,显然长度为\(2l\)的\(AA\)串会覆盖两个关键点,并且两个点在\(AA\)中的\(A\)出现位置相同

显然\(AA\)要满足\(min(lcs(i,j),l)+min(lcp(i,j),l)>l\),我们可以考虑利用这个条件,记\(l1=min(lcs(i,j),l),l2=min(lcp(i,j),l)\),那么可以知道\(s[i-l1+1,i+l2-1]=s[j-l1+1,j+l2-1]\),从而可以知道,在\(s[i-l1+1,i+l2-1]\)中任取长度为\(l\)的子串,这个子串后面一定接着一个一样的串,所以可以统计出左端点在\([i-l1+1,i+l2-l]\),长度为\(2l\)的\(AA\)串,所以a数组区间\([i-l1+l+l+1,i+l2+l]\)+1,b数组区间\([i-l1+1,i+l2-l]\)+1,差分统计即可

复杂度\(\sum_{i=1}^{\frac{n}{2}}\frac{n}{i}\),大约是\(nlogn\)

#include<bits/stdc++.h>
#define LL long long
#define il inline
#define re register

using namespace std;
const int N=4e4+10;
il LL rd()
{
    LL x=0,w=1;char ch=0;
    while(ch<'0'||ch>'9') {if(ch=='-') w=-1;ch=getchar();}
    while(ch>='0'&&ch<='9') {x=(x<<3)+(x<<1)+(ch^48);ch=getchar();}
    return x*w;
}
int sa[N],rr[N],rk[N],wx[N],wr[N],bk[N],he[N];
int mip[N][15],mis[N][15];
char cc[N];
int n,lz,aa[N],bb[N];
il void gSA(bool o)
{
    memset(wr,0,sizeof(wr));
    int sz=128;
    for(int i=0;i<=sz;++i) bk[i]=0;
    for(int i=1;i<=n;++i) ++bk[rk[i]=cc[i]];
    for(int i=1;i<=sz;++i) bk[i]+=bk[i-1];
    for(int i=n;i;--i) sa[bk[rk[i]]--]=i;
    int j=1,tp=0,p=0;
    while(p<n)
    {
        tp=0;
        for(int i=n-j+1;i<=n;++i) wx[++tp]=i;
        for(int i=1;i<=n;++i) if(sa[i]>j) wx[++tp]=sa[i]-j;
        for(int i=1;i<=n;++i) wr[i]=rk[wx[i]];
        for(int i=0;i<=sz;++i) bk[i]=0;
        for(int i=1;i<=n;++i) ++bk[wr[i]];
        for(int i=1;i<=sz;++i) bk[i]+=bk[i-1];
        for(int i=n;i;--i) sa[bk[wr[i]]--]=wx[i];
        for(int i=1;i<=n;++i) wr[i]=rk[i];
        rk[sa[1]]=p=1;
        for(int i=2;i<=n;++i) rk[sa[i]]=p+=(wr[sa[i]]==wr[sa[i-1]]&&wr[sa[i]+j]==wr[sa[i-1]+j])^1;
        sz=p,j<<=1;
    }
    for(int i=1;i<=n;++i) he[i]=0;
    for(int i=1;i<=n;++i)
    {
        if(he[rk[i-1]]) he[rk[i]]=he[rk[i-1]]-1;
        int j=sa[rk[i]-1];
        while(cc[i+he[rk[i]]]==cc[j+he[rk[i]]]) ++he[rk[i]];
    }
    int mi[N][15];
    memset(mi,0,sizeof(mi));
    for(int i=1;i<=n;++i) mi[i][0]=he[i];
    for(int j=1;j<=lz;++j)
    {
        for(int i=1;i<=n;++i)
            mi[i][j]=min(mi[i][j-1],mi[i+(1<<(j-1))][j-1]);
    }
    o?memcpy(mip,mi,sizeof(mi)):memcpy(mis,mi,sizeof(mi));
}
il int lcp(int i,int j)
{
    i=rr[i],j=rr[j];
    if(i==j) return -n;
    if(i>j) swap(i,j);
    ++i;
    int l=log2(j-i+1);
    return min(mip[i][l],mip[j-(1<<l)+1][l]);
}
il int lcs(int i,int j)
{
    i=rk[n-i+1],j=rk[n-j+1];
    if(i==j) return -n;
    if(i>j) swap(i,j);
    ++i;
    int l=log2(j-i+1);
    return min(mis[i][l],mis[j-(1<<l)+1][l]);
}

int main()
{
    int T=rd();
    while(T--)
    {
        memset(aa,0,sizeof(aa));
        memset(bb,0,sizeof(bb));
        scanf("%s",cc+1);
        n=strlen(cc+1),lz=log2(n);
        gSA(1);
        memcpy(rr,rk,sizeof(rk));
        for(int i=1;i<=n/2;++i) swap(cc[i],cc[n-i+1]);
        gSA(0);
        for(int l=1;l<=n/2;++l)
            for(int i=1,j=l+1;j<=n;i+=l,j+=l)
            {
                int l1=min(lcs(i,j),l),l2=min(lcp(i,j),l);
                if(l1+l2>l)
                {
                    ++aa[i-l1+1+l+l-1],--aa[i+l2+l];
                    ++bb[i-l1+1],--bb[i+l2-l+1];
                }
            }
        for(int i=1;i<=n;++i) aa[i]+=aa[i-1],bb[i]+=bb[i-1];
        LL ans=0;
        for(int i=1;i<n;++i) ans+=1ll*aa[i]*bb[i+1];
        printf("%lld\n",ans);
    }
    return 0;
}

沙雕\(nlog^2n\)做法

标签:AA,ch,P1117,++,luogu,min,NOI2016,l2,l1
来源: https://www.cnblogs.com/smyjr/p/10398349.html