P1880 [NOI1995]石子合并
作者:互联网
先来介绍一下四边形不等式吧
如图,这是一个四边形,看着是一个平行四边形,但他不是(我说不是就不是)
易知,AB+CD <= AD+CB
很容易证明,记中心交点为 O ,在 Rt\(_\bigtriangleup\)AOB 和 Rt\(_\bigtriangleup\)COD 中
任意两边之和大于第三边
所以两者相加,则有了四边形不等式
定理一:如果一个函数w(i,j)同时满足区间包含单调性和四边形不等式性质,那么函数:
m(i,j) = min{} + w(i,j) 也满足四边形不等式性质。
定理二:假如m(i,j)满足四边形不等式,那么s(i,j)单调,即s(i,j)≤s(i,j+1)≤s(i+1,j+1)。
s(i,j) 函数代表党m(i,j) 函数取最优值时的分割线处
来看这道题
n^3的应该都会吧
#include <bits/stdc++.h>
#define ll long long
#define E 207
using namespace std ;
ll n , a[E] , f[E][E] , p[E][E] , minn = 0x7ffffffffffLL , maxn , sum[E] ;
ll read() { ll aa ; cin >> aa ; return aa ; }
int main() {
n = read() ;
for(int i = 1 ; i <= n ; i ++) a[i] = a[i+n] = read() ;
for(int i = 1 ; i <= n*2 ; i ++) sum[i] = sum[i-1] + a[i] ;
for(int d = 2 ; d <= n ; d ++) {
for(int i = 1 ; i+d-1 <= n*2 ; i ++) {
ll j = i + d - 1 ;
f[i][j] = 0x7ffffffffffLL ;
for(int l = i ; l < j ; l ++) {
f[i][j] = min(f[i][l]+f[l+1][j] + sum[j]-sum[i-1] , f[i][j]) ;
p[i][j] = max(p[i][l]+p[l+1][j] + sum[j]-sum[i-1] , p[i][j]) ;
}
if(d == n) minn = min(f[i][j] , minn) , maxn = max(p[i][j] , maxn) ;
}
}
cout << minn << endl << maxn << endl ;
return 0 ;
}
引用并推荐
看我优化 (玄学)
#include <bits/stdc++.h>
#define ll long long
#define E 207
using namespace std ;
ll n , a[E] , f[E][E] , p[E][E] , s[E][E] , minn = 0x7ffffffffffLL , maxn , sum[E] ;
ll read() { ll aa ; cin >> aa ; return aa ; }
int main() {
n = read() ;
for(int i = 1 ; i <= n ; i ++) a[i] = a[i+n] = read() ;
for(int i = 1 ; i <= n*2 ; i ++) sum[i] = sum[i-1] + a[i] , s[i][i] = i ;
for(int d = 2 ; d <= n ; d ++) {
for(int i = 1 ; i+d-1 <= n*2 ; i ++) {
ll j = i + d - 1 ;
p[i][j] = max(p[i][j-1]+0 , p[i+1][j]+0) + sum[j]-sum[i-1] ;
f[i][j] = 0x7ffffffffffLL ;
for(int l = s[i][j-1] ; l <= s[i+1][j] ; l ++) {
if(f[i][l]+f[l+1][j] + sum[j]-sum[i-1] < f[i][j]) {
f[i][j] = f[i][l]+f[l+1][j] + sum[j]-sum[i-1] ;
s[i][j] = l ;
}
}
if(d == n) minn = min(f[i][j] , minn) , maxn = max(p[i][j] , maxn) ;
}
}
cout << minn << endl << maxn << endl ;
return 0 ;
}
标签:aa,不等式,int,NOI1995,ll,石子,P1880,四边形,define 来源: https://www.cnblogs.com/trouble-faker/p/10397167.html