导数的运算训练题
作者:互联网
前言
公式法则
- 常用求导公式
原函数 | 导函数 | 原函数 | 导函数 |
---|---|---|---|
\(f(x)=C\)(\(C\)为常数) | \(f'(x)=0\) | \(f(x)=x^{\alpha}\)(\(\alpha\)为常数) | \(f'(x)\)\(\sqrt{x}'\)\(=\)\((x^{\frac{1}{2}})'\)\(=\)\(\cfrac{1}{2}\)\(x^{-\frac{1}{2}}\)\(=\)\(\cfrac{1}{2\sqrt{x}}\),\((x^{-1})'\)\(=\)\(-\cfrac{1}{x^2}\);\(=\)\(\alpha\)\(\cdot\)\(x^{\alpha-1}\) |
\(f(x)=a^x\)(\(a\)为常数) | \(f'(x)\)\(=\)\(a^x\)\(\cdot\)\(\ln a\)特例:\((e^x)'=e^x\); | \(f(x)=log_ax\)(\(a\)为常数) | \(f'(x)\)特例:\((\ln x)'=\cfrac{1}{x}\)\(=\)\(\cfrac{1}{x\cdot lna}\) |
\(f(x)=\sin x\) | \(f'(x)=\cos x\) | \(f(x)=\cos x\) | \(f'(x)=-\sin x\) |
- 导数的四则运算法则:
加法:\([f(x)+ g(x)]'=f'(x)+ g'(x)\);
减法:\([f(x)- g(x)]'=f'(x)- g'(x)\);
乘法:\([f(x)\cdot g(x)]'=f'(x)\cdot g(x)+f(x)\cdot g'(x);\)常用 \([k\)\(\cdot\)\(f(x)]'\) \(=\) \(k\)\(\cdot\)\(f'(x)\) (\(k\)常)
(\(x\)\(\cdot\)\(\ln x\)\()^{\prime}\)\(=\)\(1\)\(+\)\(\ln x\);
\((e^{-2x})'\)\(=\)\(-2\)\(e^{-2x}\)
除法:\([\cfrac{f(x)}{g(x)}]'=\cfrac{f'(x)\cdot g(x)-f(x)\cdot g'(x)}{[g(x)]^2}\)
计算策略
- 计算原则:先化简解析式,使之变成能用八个求导公式[即求导公式]求导的和、差、积、商的形式[即求导法则],然后求导;
- 具体方法如下:
①.连乘积的形式:先展开化简为多项式的形式,再求导;
②.分式形式:观察函数的结构特征,考虑化为整式函数或部分分式形式的函数,再求导;
③.对数形式:先化为和、差形式,再求导;
④.根式形式:先化为分数指数幂的形式,再求导;
⑤.三角形式:先利用三角公式化为和或差的形式,再求导;
典例剖析
分析:\(f'(x_0)=\lim\limits_{\Delta x \to 0} \cfrac{\Delta y}{\Delta x}=\lim\limits_{\Delta x \to 0}\cfrac{f(x_0+\Delta x)-f(x_0)}{\Delta x}\)
为便于表述和计算,记\(f(x)=\cfrac{1}{\sqrt{x}}\),
则\(\cfrac{\Delta y}{\Delta x}=\cfrac{f(1+\Delta x)-f(1)}{\Delta x}\)\(=\cfrac{\cfrac{1}{\sqrt{1+\Delta x}}-1}{\Delta x}\)
\(\hspace{3em}=\cfrac{\cfrac{1-\sqrt{1+\Delta x}}{\sqrt{1+\Delta x}}}{\Delta x}\)\(=\cfrac{1-\sqrt{1+\Delta x}}{\Delta x\cdot \sqrt{1+\Delta x}}\)
\(\hspace{3em}=\cfrac{(1-\sqrt{1+\Delta x})\cdot (1+\sqrt{1+\Delta x})}{\Delta x\cdot \sqrt{1+\Delta x}\cdot (1+\sqrt{1+\Delta x})}\)
\(\hspace{3em}=\cfrac{-\Delta x}{\Delta x\cdot \sqrt{1+\Delta x}\cdot (1+\sqrt{1+\Delta x})}\)
\(\hspace{3em}=\cfrac{-1}{\sqrt{1+\Delta x}\cdot (1+\sqrt{1+\Delta x})}\)
则\(\lim\limits_{\Delta x \to 0} \cfrac{\Delta y}{\Delta x}=\lim\limits_{\Delta x \to 0} \cfrac{-1}{\sqrt{1+\Delta x}\cdot (1+\sqrt{1+\Delta x})}\)\(=-\cfrac{1}{2}\)。
补遗:用公式法求解导数,由于\(y=\cfrac{1}{\sqrt{x}}=x^{-\frac{1}{2}}\),则\(y'=-\cfrac{1}{2}x^{-\frac{1}{2}-1}\),
当\(x=1\)时,\(y'|_{x=1}=-\cfrac{1}{2}\cdot 1^{-\frac{1}{2}-1}=-\cfrac{1}{2}\).
①\(y=(2x^2-1)(3x+1)\);
解:首先将连乘积的形式展开化简为多项式的形式,
得到\(y=6x^3+2x^2-3x-1\),故\(y'=18x^2+4x-3\);
②\(f(x)=\cfrac{\sqrt{x}+x^5+\sin x}{x^2}\)
解:\(f(x)=x^{-\frac{3}{2}}+x^3+\cfrac{\sin x}{x^2}\),
则\(y'=-\cfrac{3}{2}x^{-\frac{5}{2}}+3x^2+\cfrac{\cos x\cdot x^2-\sin x\cdot (2x)}{x^4}\)
\(=-\cfrac{3}{2}x^{-\frac{5}{2}}+3x^2+\cfrac{x\cos x-2\sin x}{x^3}\)
③\(g(x)=-\sin\cfrac{x}{2}(1-2\cos^2\cfrac{x}{4})\)
解:首先化简为\(g(x)=-\sin\cfrac{x}{2}\cdot (-\cos\cfrac{x}{2})=\cfrac{1}{2}\sin x\),
则\(g'(x)=\cfrac{1}{2}\cos x\).
④\(h(x)=\ln(2x-5)\)
解:\(h'(x)=\cfrac{1}{2x-5}\cdot (2x-5)'=\cfrac{2}{2x-5}\)
⑤\(m(x)=\cfrac{1}{1-\sqrt{x}}+\cfrac{1}{1+\sqrt{x}}\)
解:先通分化简为\(m(x)=\cfrac{2}{1-x}\),
则\(m'(x)=2\cdot \cfrac{0-1\cdot (-1)}{(1-x)^2}=\cfrac{2}{(1-x)^2}\)
⑥\(y=e^{-3x}-1\)
解:\(y'=-3\cdot e^{-3x}\);
⑦\(f(x)=ln\cfrac{x-1}{x+1}\)
解:\(f(x)=ln(x-1)-ln(x+1)\),
则\(f'(x)=\cfrac{1}{x-1}\cdot 1-\cfrac{1}{x+1}\cdot 1\)
\(=\cfrac{(x+1)-(x-1)}{(x-1)(x+1)}=\cfrac{2}{(x-1)(x+1)}\)
⑧\(g(x)=\cfrac{-x+1}{e^{-x}}\)
解:\(g'(x)=\cfrac{-1\cdot e^{-x}-(-x+1)\cdot e^{-x}\cdot(-1)}{(e^{-x})^2}=\cfrac{e^{-x}[-1+(-x+1)]}{(e^{-x})^2}=\cfrac{-x}{e^{-x}}\)
分析:回顾导数的定义式,$$\lim\limits_{\Delta x \to 0} \cfrac{\Delta y}{\Delta x}=\lim\limits_{\Delta x \to 0}\cfrac{f(x_0+\Delta x)-f(x_0)}{\Delta x}$$
变形如下,由于\(\cfrac{f(-\Delta x)-f(\Delta x)}{\Delta x}\)
\(=\cfrac{-[f(0)-f(0-\Delta x)]-[f(0+\Delta x)-f(0)]}{\Delta x}\)
\(=\cfrac{-[f(0)-f(0-\Delta x)]}{\Delta x}+\cfrac{-[f(0+\Delta x)-f(0)]}{\Delta x}\)
故\(\lim\limits_{\Delta x \to 0} \cfrac{f(-\Delta x)-f(\Delta x)}{\Delta x}\)
\(=\lim\limits_{\Delta x \to 0}\cfrac{-[f(0)-f(0-\Delta x)]}{\Delta x} +\lim\limits_{\Delta x \to 0} \cfrac{-[f(0+\Delta x)-f(0)]}{\Delta x}\)
\(=-f'(x)|_{x=0}-f'(x)|_{x=0}=-(2e^{2x}+3)|_{x=0}-(2e^{2x}+3)|_{x=0}=-10\)
分析:本题目的求解难点在于对函数\(f(x)\)的拆分, 为什么要如下拆分,大家看完求解过程就清楚了。
令\(g(x)=(x+1)(x+2)\cdots (x+2013)\),则\(f(x)=x\cdot g(x)\),
则\(f'(x)=g(x)+x\cdot g'(x)\),故\(f'(0)=g(0)+0\cdot g'(0)=1\times 2\times 3\times \cdots \times 2013\);
① \(f(x)=e^x(e^x-a)-a^2x\),
分析:\(f'(x)=e^x(e^x-a)+e^x\cdot e^x-a^2=2e^{2x}-e^xa-a^2=(e^x-a)(2e^x+a)\);
②函数\(f(x)=(x^2+ax-1)e^{x-1}\)
分析:\(f'(x)=(2x+a)e^{x-1}+(x^2+ax-1)e^{x-1}=e^{x-1}[x^2+(a+2)x+a-1]\);
③函数\(f(x)=(a+1)lnx+ax^2+1\),
求导得到\(f'(x)=\cfrac{a+1}{x}+2ax=\cfrac{2ax^2+a+1}{x}\),
标签:运算,训练,cdot,2x,导数,sqrt,cfrac,Delta,求导 来源: https://www.cnblogs.com/wanghai0666/p/15351016.html