其他分享
首页 > 其他分享> > 超详细STL之array容器使用及实现原理解析

超详细STL之array容器使用及实现原理解析

作者:互联网

说明一下,我用的是gcc7.1.0编译器,标准库源代码也是这个版本的。

本篇文章讲述STL中array的使用及原理。

导读

array其实是一个固定大小的数组,元素类型及大小在声明的时候指定,原型如下:

template<typename _Tp, std::size_t _Nm>
    struct array
    {
    ...
    };

有些书上说array也是一个class,但是我这个版本看到的是struct,不过没有关系,除了一些细微的方面,struct和class并无太大的区别,这里可以看到array其实就是一个模板类。

array的初步使用

使用array要包含头文件<array>,并声明std命名空间才可使用。

如下是一个简单的案例:

#include <array>
#include <iostream>

int main()
{
	std::array<int,5> a = {1,2,3,4,5};
	for(auto i:a)
	{
		std::cout << "value is " << i << std::endl;
	}
	return 0;
}

fill()和swap()的使用

先看下他们的原型,如下:

//fill函数是把当前array里面所有元素都填充为入参__u
void fill(const value_type& __u);
//swap是交换两个array数据
void swap(array& __other) noexcept(_AT_Type::_Is_nothrow_swappable::value);

看一下使用案例:

#include <array>
#include <iostream>

int main()
{
	std::array<int,5> arr1;
	arr1.fill(5);
	for(auto i:arr1)
	{
		std::cout << "arr1 value is " << i << std::endl;
	}
	std::array<int,5> arr2 = {1,2,3,4,5};
	arr2.swap(arr1);
	for(auto i:arr1)
	{
		std::cout << "arr1 value is " << i << std::endl;
	}
	for(auto i:arr2)
	{
		std::cout << "arr2 value is " << i << std::endl;
	}
	return 0;
}

这里要注意的一个点是,arr1和arr2的元素类型和大小都必须要完全一致,才可以使用swap函数,因为使用swap的前提就是类型要完全一致,而array容器的类型是包括两个模板参数:元素类型和元素个数,如果不一致,编译时没有办法通过的。

迭代器函数

//这里value_type就是定义一个array时指定的元素类型,比如在上面的例子中,它就是int类型
typedef value_type*          		      iterator;
typedef const value_type*			      const_iterator;
//返回一个指向当前array的第一个元素的可读可写的迭代器
_GLIBCXX17_CONSTEXPR iterator
begin() noexcept
{ return iterator(data()); }
//返回一个指向当前array的第一个元素的只读迭代器
_GLIBCXX17_CONSTEXPR const_iterator
begin() const noexcept
{ return const_iterator(data()); }
//返回一个指向当前array的最后一个元素的下一个位置的可读可写迭代器
_GLIBCXX17_CONSTEXPR iterator
end() noexcept
{ return iterator(data() + _Nm); }
//返回一个指向当前array的最后一个元素的下一个位置的只读迭代器
_GLIBCXX17_CONSTEXPR const_iterator
end() const noexcept
{ return const_iterator(data() + _Nm); }
//返回一个指向当前array的最后一个元素的下一个位置的可读可写反转迭代器,也就是指向最后一个元素
_GLIBCXX17_CONSTEXPR reverse_iterator
rbegin() noexcept
{ return reverse_iterator(end()); }
//返回一个指向当前array的最后一个元素的只读迭代器
_GLIBCXX17_CONSTEXPR const_reverse_iterator
rbegin() const noexcept
{ return const_reverse_iterator(end()); }
//返回一个指向当前array的第一个元素的前一个位置的可读可写的迭代器
_GLIBCXX17_CONSTEXPR reverse_iterator
rend() noexcept
{ return reverse_iterator(begin()); }
//返回一个指向当前array的第一个元素的前一个位置的只读迭代器
_GLIBCXX17_CONSTEXPR const_reverse_iterator
rend() const noexcept
{ return const_reverse_iterator(begin()); }

//以下四个迭代器其实与上面的一致,只是它都是只读迭代器
_GLIBCXX17_CONSTEXPR const_iterator
cbegin() const noexcept
{ return const_iterator(data()); }

_GLIBCXX17_CONSTEXPR const_iterator
cend() const noexcept
{ return const_iterator(data() + _Nm); }

_GLIBCXX17_CONSTEXPR const_reverse_iterator
crbegin() const noexcept
{ return const_reverse_iterator(end()); }

_GLIBCXX17_CONSTEXPR const_reverse_iterator
crend() const noexcept
{ return const_reverse_iterator(begin()); }

在这一堆迭代器函数里面有两点需要注意:

为了避免混淆,使用的时候,如果要可读可写,就直接使用begin,要只读就使用cbegin,要反转的话,就使用rbegin。

使用案例如下:

#include <iostream>
#include <array>
using namespace std;

int main()
{
	array<int,5> a = {1,2,3,4,5};
	array<int,5>::iterator ite1 = a.begin();
	array<int,5>::const_iterator ite2 = a.begin();
	auto ite3 = a.rbegin();
	*ite1 = 3;
	cout << *ite1 << endl;
	//*ite2 = 4; //这里不行,说向只读位置写数据
	cout << *ite2 << endl;
	cout << *ite3 << endl;
 
	return 0;
}

从这里可以看出来,编译器应该是根据左边变量的类型来决定到底要调用哪个函数的。而*ite3这里输出了5,说明在rbegin 反转了位置和方向。

size、max_size、empty函数

函数原型如下:

constexpr size_type
size() const noexcept { return _Nm; }

constexpr size_type
max_size() const noexcept { return _Nm; }

constexpr bool
empty() const noexcept { return size() == 0; }

_Nm是在声明一个array的时候就固定的数值,标示它的元素个数,因为array是容量固定的容器,所以它的size()=max_size(),当empty返回为真的时候则说明该容器一个元素都没有。

下标[]及at函数

还是看一下原型:

//重载了operator[]以后允许我们像使用数组一样使用array
_GLIBCXX17_CONSTEXPR reference
operator[](size_type __n) noexcept
{ return _AT_Type::_S_ref(_M_elems, __n); }

constexpr const_reference
operator[](size_type __n) const noexcept
{ return _AT_Type::_S_ref(_M_elems, __n); }

_GLIBCXX17_CONSTEXPR reference
at(size_type __n)
{
if (__n >= _Nm)
std::__throw_out_of_range_fmt(__N("array::at: __n (which is %zu) "
                ">= _Nm (which is %zu)"),
            __n, _Nm);
return _AT_Type::_S_ref(_M_elems, __n);
}

constexpr const_reference
at(size_type __n) const
{
// Result of conditional expression must be an lvalue so use
// boolean ? lvalue : (throw-expr, lvalue)
return __n < _Nm ? _AT_Type::_S_ref(_M_elems, __n)
: (std::__throw_out_of_range_fmt(__N("array::at: __n (which is %zu) "
                   ">= _Nm (which is %zu)"),
               __n, _Nm),
 _AT_Type::_S_ref(_M_elems, 0));
}

重载符函数operator[]和at函数都实现了两个,与上面的迭代器一样,根据左值判断具体调用哪一个函数。

根据代码实现看,其实[]和at实现一样,只不过下标[]如果取了不在容器范围内数据,不会抛出错误,而at函数则会,看下面代码:

#include <iostream>
#include <array>
using namespace std;

int main()
{
	array<int,5> a= {1,2,3,4,5};
	cout << a[6];//这里不会报错
	//cout << a.at(6);//此处会报错:terminate called after throwing an instance of 'std::out_of_range'
    a[3] = 100;
	cout << "a[3]=" << a[3] << endl;
	return 0;
}

所以使用的时候,如能确定不会超出容器范围,则可以使用[],否则建议使用at,避免出现一些莫名其妙的问题。

另外因为[]和at返回返回的都是引用,所以我们可以直接通过这两种方式去修改array中元素的值。

front、back、data函数

array容器是不存在push之类往里面写数据的函数的,因为它容量固定,但它也提供了从头和尾取数据的函数:

_GLIBCXX17_CONSTEXPR reference
front() noexcept
{ return *begin(); }

constexpr const_reference
front() const noexcept
{ return _AT_Type::_S_ref(_M_elems, 0); }

_GLIBCXX17_CONSTEXPR reference
back() noexcept
{ return _Nm ? *(end() - 1) : *end(); }

constexpr const_reference
back() const noexcept
{
return _Nm ? _AT_Type::_S_ref(_M_elems, _Nm - 1)
       : _AT_Type::_S_ref(_M_elems, 0);
}

_GLIBCXX17_CONSTEXPR pointer
data() noexcept
{ return _AT_Type::_S_ptr(_M_elems); }

_GLIBCXX17_CONSTEXPR const_pointer
data() const noexcept
{ return _AT_Type::_S_ptr(_M_elems); }

其实仔细看就会发现,front和back返回的就是引用,与下标和at类型一致,而data返回的则是指针与迭代器使用一致,所以他们的使用可以参考上面的代码,这里就不再详细说明了。

array的实现原理

我们前面说了array是一个容量大小固定的数组,那么它是怎么实现的呢?

我们看一下,array头文件里面是这样定义的,如下:

template<typename _Tp, std::size_t _Nm>
struct __array_traits
{
  typedef _Tp _Type[_Nm];
  typedef __is_swappable<_Tp> _Is_swappable;
  typedef __is_nothrow_swappable<_Tp> _Is_nothrow_swappable;

  static constexpr _Tp&
  _S_ref(const _Type& __t, std::size_t __n) noexcept
  { return const_cast<_Tp&>(__t[__n]); }

  static constexpr _Tp*
  _S_ptr(const _Type& __t) noexcept
  { return const_cast<_Tp*>(__t); }
};
template<typename _Tp, std::size_t _Nm>
struct array
{
	......
    //这里对类型取别名
    typedef _GLIBCXX_STD_C::__array_traits<_Tp, _Nm> _AT_Type;
    typename _AT_Type::_Type                         _M_elems;
    ......
};

可以看出来_M_elems是一个根据我们指定元素个数定义的数组,而元素类型和元素个数都是根据我们声明array对象时模板实参决定的,而返回引用还是指针则是根据_S_ref和_S_ptr这两个静态成员函数来决定的。

array说白了,就是在一个固定大小的数组基础上进行了一些封装,且使用了模板,让我们可以灵活定义各种类型的数组,既然是数组,那必然是一段连续的地址空间,对于一段连续的地址空间,不论是获取数据还是修改数据都可以在常量复杂度下完成,所以array效率也还不错。而相比于普通的数组,因为array做了封装,只能通过它提供的接口去操作数组,又保证了一定的安全性,所以如果想使用固定大小的数组,推荐使用array呀。

标签:__,const,iterator,STL,noexcept,return,array,解析
来源: https://blog.51cto.com/u_14438799/2887199