(笔记)(6)AMCL包源码分析 | 粒子滤波器模型与pf文件夹(二)
作者:互联网
上一讲介绍了粒子滤波器模型的相关理论以及pf.cpp中的几个关键函数,这一讲我们将对pf.cpp的代码进行详细分析。
先看pf.cpp引用的关键头文件,我们稍后再梳理这些头文件,现在先将pf.cpp的脉络梳理清楚。
#include "amcl/pf/pf.h"
#include "amcl/pf/pf_pdf.h"
#include "amcl/pf/pf_kdtree.h"
在计算所需的粒子sample的数目的时候,这里使用KLD算法精髓里的直方图概念来表达,选用的是粒子sample集分布在直方图的k个bin里。
图1.直方图表示
//pf粒子滤波器是粒子sample集的来源,k是至少填充了一个粒子的直方图的位数
static int pf_resample_limit(pf_t *pf, int k);
1.创建一个粒子滤波器
创建一个粒子滤波器,输入为我们关心的粒子sample集的最小数目,最大数目, αslow , αfast ,粒子滤波器初始化模型,随机生成数据的函数。
// Create a new filter
pf_t *pf_alloc(int min_samples, int max_samples,
double alpha_slow, double alpha_fast,
pf_init_model_fn_t random_pose_fn, void *random_pose_data)
在函数内部对粒子滤波器,粒子sample集,粒子sample进行定义声明初始化。
{
int i, j;
pf_t *pf;
//粒子sample集
pf_sample_set_t *set;
//粒子sample
pf_sample_t *sample;
srand48(time(NULL));
//根据粒子滤波器的类型创建pf
pf = calloc(1, sizeof(pf_t));
//对粒子滤波器的随机位姿生成模型进行初始化
pf->random_pose_fn = random_pose_fn;
pf->random_pose_data = random_pose_data;
//粒子sample集的最小数目
pf->min_samples = min_samples;
//粒子sample集的最大数目
pf->max_samples = max_samples;
...
}
接下来用到的几个参数:pop_err,pop_z,dist_threshold均与KLD算法有关。其中pop_error代表两个概率分布差的最大测度,pop_z用于确定样本数,基于参数sigma,代表标准正态分布上的1-sigma分位点。对典型值sigma,pop_z(1-sigma)的值在标准统计表里是现成的。dist_threshold为阈值。
//pop_error代表两个概率分布差的最大测度(真实分布与估计分布)
//[err] is the max error between the true distribution and the estimated
distribution.
pf->pop_err = 0.01;
//pop_z代表标准正态分布上的1-sigma分位点
//[z] is the upper standard normal quantile for (1 - p), where p is
the probability that the error on the estimated distrubition will be
less than [err].
pf->pop_z = 3;
pf->dist_threshold = 0.5;
叶子节点的数目不能高过粒子样本集的最大数目:
// 叶子节点的数目不能高过粒子样本集的最大数目
pf->limit_cache = calloc(max_samples, sizeof(int));
关于粒子滤波器的两个粒子sample集:current_set和set
//将pf->current_set设置为0
pf->current_set = 0;
//使用一个for循环,遍历两次:从而刷新两个set
for (j = 0; j < 2; j++)
{
//set是指针,这里使用j依次读取pf->sets的元素set
set = pf->sets + j;
//设置粒子集set的sample集最大数目
set->sample_count = max_samples;
//给粒子sample集set以粒子sample集的最大数目分配内存
set->samples = calloc(max_samples, sizeof(pf_sample_t));
//这里使用一个for循环遍历该粒子sample集set,从而读取到每一个sample对象
for (i = 0; i < set->sample_count; i++)
{
//sample是指针,这里使用i依次读取set->samples的元素sample
sample = set->samples + i;
//对粒子sample的位姿和权重进行初始化
sample->pose.v[0] = 0.0;
sample->pose.v[1] = 0.0;
sample->pose.v[2] = 0.0;
sample->weight = 1.0 / max_samples;
}
// HACK: is 3 times max_samples enough?
//粒子sample集set的kdtree数据结构,用三倍于粒子sample集的最大数目来分配内存:
//实际上这里需要计算复杂度,很显然代码的作者并没有计算,而是简单粗暴分配三倍内存
set->kdtree = pf_kdtree_alloc(3 * max_samples);
//对粒子sample集set的簇cluster进行初始化
set->cluster_count = 0;
set->cluster_max_count = max_samples;
//给粒子sample集set的簇cluster分配内存
set->clusters = calloc(set->cluster_max_count, sizeof(pf_cluster_t));
//对粒子sample集set的均值和协方差进行初始化
set->mean = pf_vector_zero();
set->cov = pf_matrix_zero();
}
还有几个参数需要初始化,它们是 wslow , wfast , αslow , αfast 。
pf->w_slow = 0.0;
pf->w_fast = 0.0;
pf->alpha_slow = alpha_slow;
pf->alpha_fast = alpha_fast;
最后,将粒子sample集set收敛于0。
//set converged to 0
pf_init_converged(pf);
至此,就完成了粒子滤波器的创建。
2.销毁一个粒子滤波器
关于释放一个粒子滤波器的内存,这里用到一个for循环,遍历两次,其实就是把粒子滤波器的两个粒子sample集set给依次释放内存了。而在粒子sample集set内部,先后将粒子sample集set的簇cluster占据的内存,粒子sample集set所使用的数据结构kdtree占据的内存,粒子sample集set的sample对象占据的内存释放,这就完成了一个粒子滤波器的销毁。
// Free an existing filter
void pf_free(pf_t *pf)
{
int i;
free(pf->limit_cache);
//因为有两个set
for (i = 0; i < 2; i++)
{
free(pf->sets[i].clusters);
pf_kdtree_free(pf->sets[i].kdtree);
free(pf->sets[i].samples);
}
free(pf);
return;
}
3.初始化粒子滤波器
这里用了两种方法来初始化粒子滤波器,第一种方法是使用高斯模型(均值,协方差)来初始化滤波器,还有一种方法是使用模型来初始化。
先看第1种方法:
// 使用高斯模型(均值,协方差)初始化滤波器
void pf_init(pf_t *pf, pf_vector_t mean, pf_matrix_t cov)
{
int i;
//创建粒子sample集set,粒子sample对象,概率密度函数pdf
pf_sample_set_t *set;
pf_sample_t *sample;
pf_pdf_gaussian_t *pdf;
//初始化粒子sample集set
set = pf->sets + pf->current_set;
//创建kdtree为了选择性采样
// Create the kd tree for adaptive sampling
pf_kdtree_clear(set->kdtree);
//粒子sample集set的sample数目设定
set->sample_count = pf->max_samples;
//使用高斯模型(均值,协方差)创建pdf
pdf = pf_pdf_gaussian_alloc(mean, cov);
//计算新的粒子sample对象的位姿
//使用for循环遍历粒子sample集set的每个sample对象
for (i = 0; i < set->sample_count; i++)
{
sample = set->samples + i;
//对粒子sample的权重进行初始化
sample->weight = 1.0 / pf->max_samples;
//对粒子sample的位姿使用pdf模型产生
sample->pose = pf_pdf_gaussian_sample(pdf);
//以kdtree数据结构的方式添加/存储粒子sample 或者说以kdtree数据结构的方式表达直方图
// Add sample to histogram(kdtree)
pf_kdtree_insert(set->kdtree, sample->pose, sample->weight);
}
//对 w_{slow} , w_{fast} 进行设置
pf->w_slow = pf->w_fast = 0.0;
//销毁释放pdf占用的内存
pf_pdf_gaussian_free(pdf);
//再次计算粒子sample集set的簇cluster的统计特性,输入为粒子滤波器pf,和set
// Re-compute cluster statistics
pf_cluster_stats(pf, set);
//粒子sample集set收敛到0
//set converged to 0
pf_init_converged(pf);
return;
}
然后是第2种方法:
//使用pf_init_model_fn_t模型初始化
void pf_init_model(pf_t *pf, pf_init_model_fn_t init_fn, void *init_data)
{
int i;
//创建粒子sample集set,粒子sample对象
pf_sample_set_t *set;
pf_sample_t *sample;
//初始化粒子sample集set
set = pf->sets + pf->current_set;
// Create the kd tree for adaptive sampling 创建kdtree为了选择性采样
pf_kdtree_clear(set->kdtree);
set->sample_count = pf->max_samples;
//计算新的粒子sample对象的位姿
//使用for循环遍历粒子sample集set的每个sample对象
// Compute the new sample poses
for (i = 0; i < set->sample_count; i++)
{
sample = set->samples + i;
sample->weight = 1.0 / pf->max_samples;
//看这里!生成粒子位姿的方式不一样,不一样!
//对粒子sample的位姿使用pf_init_model_fn_t模型生成
sample->pose = (*init_fn) (init_data);
//以kdtree数据结构的方式添加/存储粒子sample 或者说以kdtree数据结构的方式表达直方图
// Add sample to histogram(kdtree)
pf_kdtree_insert(set->kdtree, sample->pose, sample->weight);
}
//下面的都跟上面第1种方法一样啦,一样啦
pf->w_slow = pf->w_fast = 0.0;
// Re-compute cluster statistics
pf_cluster_stats(pf, set);
//set converged to 0
pf_init_converged(pf);
return;
}
4.粒子滤波器收敛
首先是粒子滤波器初始化收敛:
void pf_init_converged(pf_t *pf){
pf_sample_set_t *set;
set = pf->sets + pf->current_set;
//就是这么简单,将converged标志符改成0
set->converged = 0;
pf->converged = 0;
}
其次是粒子滤波器更新收敛: 这里的关键在于dist_threshold,粒子的位姿pose在x,y方向上的值分别减去平均值mean_x,mean_y,得到的差值与dist_threshold比较,如果差值大于dist_threshold那就显示没收敛,粒子还处于发散的状态中。
int pf_update_converged(pf_t *pf)
{
int i;
//创建粒子sample集set,粒子sample对象
pf_sample_set_t *set;
pf_sample_t *sample;
//初始化粒子sample集set
set = pf->sets + pf->current_set;
//初始化men_x,mean_y
double mean_x = 0, mean_y = 0;
//计算新的粒子sample对象的位姿
//使用for循环遍历粒子sample集set的每个sample对象
for (i = 0; i < set->sample_count; i++){
sample = set->samples + i;
//计算粒子sample对象位姿pose的x,y方向上的和
mean_x += sample->pose.v[0];
mean_y += sample->pose.v[1];
}
//计算粒子sample对象位姿pose的x,y方向上的均值mean
mean_x /= set->sample_count;
mean_y /= set->sample_count;
//使用for循环遍历粒子sample集set的每个sample对象
for (i = 0; i < set->sample_count; i++){
sample = set->samples + i;
//这里的关键在于dist_threshold,粒子的位姿pose在x,y方向上的值分别减去平均值mean_x,
//mean_y,得到的结果与dist_threshold比较,如果结果大于dist_threshold那就显示没收敛,
//粒子还处于发散的状态中,至少dist_threshold表示不满意!
if(fabs(sample->pose.v[0] - mean_x) > pf->dist_threshold ||
fabs(sample->pose.v[1] - mean_y) > pf->dist_threshold){
set->converged = 0; //发散情况下,converged设置为0
pf->converged = 0; //发散情况下,converged设置为0
return 0;
}
}
set->converged = 1; //收敛情况下,converged设置为1
pf->converged = 1; //收敛情况下,converged设置为1
return 1;
}
5.粒子滤波器随运动和观测更新
关于原理部分请跳转至上一讲的“2.粒子滤波器与蒙特卡罗定位”。
Churlaaaaaaa:5.AMCL包源码分析 | 粒子滤波器模型与pf文件夹(一)2 赞同 · 0 评论文章首先是根据运动来更新粒子滤波器,其实是更新粒子的位姿:
// Update the filter with some new action
void pf_update_action(pf_t *pf, pf_action_model_fn_t action_fn, void *action_data)
{
//创建粒子sample集set
pf_sample_set_t *set;
//初始化粒子sample集set
set = pf->sets + pf->current_set;
//引入运动模型action_fn,举个例子,这里我选择差分模型:odom_diff!
(*action_fn) (action_data, set);
return;
}
然后是根据观测来更新粒子滤波器,其实是更新粒子的权重:
// Update the filter with some new sensor observation
void pf_update_sensor(pf_t *pf, pf_sensor_model_fn_t sensor_fn, void *sensor_data)
{
int i;
//创建粒子sample集set,粒子sample对象
pf_sample_set_t *set;
pf_sample_t *sample;
//想想看这个total是干什么的呢?
double total;
//初始化粒子sample集set
set = pf->sets + pf->current_set;
//引入sensor_fn,这里我选择似然域模型:likelihood_filed 来计算粒子sample集set的权重
total = (*sensor_fn) (sensor_data, set);
//又一个重要参数n_eff
set->n_effective = 0;
//如果呢,观测模型计算出的粒子sample集set的权值(或者说概率probability)大于0,那么:
if (total > 0.0)
{
//粒子sample集sample对象的权重归一化,设置w_avg
// Normalize weights
double w_avg=0.0;
//使用for循环遍历粒子sample集set的每个sample对象
for (i = 0; i < set->sample_count; i++)
{
sample = set->samples + i;
//利用粒子sample集sample对象的权重对w_avg赋值
w_avg += sample->weight;
//粒子集sample对象的权重归一化
sample->weight /= total;
//利用粒子sample集sample对象的权重的平方对粒子集set的n_eff参数赋值
set->n_effective += sample->weight*sample->weight;
}
// Update running averages of likelihood of samples (Prob Rob p258)
//将w_avg除以粒子集sample数目,得到新的w_avg
w_avg /= set->sample_count;
//重新刷新w_slow的值,怎么刷新呢?
//如果w_slow等于0,那么将w_avg的值赋给它
if(pf->w_slow == 0.0)
pf->w_slow = w_avg;
//如果w_slow不等于0,那么它将获得alpha_slow*(w_avg-w_slow)
else
pf->w_slow += pf->alpha_slow * (w_avg - pf->w_slow);
//重新刷新w_fast的值,怎么刷新呢?
if(pf->w_fast == 0.0)
//如果w_fast等于0,那么将w_avg的值赋给它
pf->w_fast = w_avg;
//如果w_fast不等于0,那么它将获得alpha_fast*(w_avg-w_fast)
else
pf->w_fast += pf->alpha_fast * (w_avg - pf->w_fast);
}
//如果呢,观测模型计算出的粒子sample集set的权值(或者说概率probability)不大于0,那该怎么办呢?
else
{
// Handle zero total
//使用for循环遍历粒子sample集set的每个sample对象,并将每个sample的权重设置得一模一样的
//都是weight = 1.0 / sample_count;
for (i = 0; i < set->sample_count; i++)
{
sample = set->samples + i;
sample->weight = 1.0 / set->sample_count;
}
}
最后,将粒子sample集set的n_eff参数设置为:1/n_eff
set->n_effective = 1.0/set->n_effective;
return;
}
6.复制粒子sample集set
// copy set a to set b
void copy_set(pf_sample_set_t* set_a, pf_sample_set_t* set_b)
{
int i;
double total;
//创建粒子sample对象sample_a,sample_b
pf_sample_t *sample_a, *sample_b;
//清除粒子sample集set_b的kdtree
// Clean set b's kdtree
pf_kdtree_clear(set_b->kdtree);
//从set_a那里复制sample来创建set_b
// Copy samples from set a to create set b
total = 0;
//将set_b的sample数目初始化为0
set_b->sample_count = 0;
//使用for循环遍历粒子sample集set_a的每个sample对象,再copy到set_b里
for(i = 0; i < set_a->sample_count; i++)
{
sample_b = set_b->samples + set_b->sample_count++;
sample_a = set_a->samples + i;
assert(sample_a->weight > 0);
// Copy sample a to sample b:不仅仅是sample的位姿,权重也要一并复制
sample_b->pose = sample_a->pose;
sample_b->weight = sample_a->weight;
//一直在累积粒子sample_b的权重
total += sample_b->weight;
//将粒子sample_b加入到直方图里,这里用kdtree的数据结构表示,结果就是插入到粒子sample集set_b里
// Add sample to histogram(kdtree)
pf_kdtree_insert(set_b->kdtree, sample_b->pose, sample_b->weight);
}
//将粒子sample集set_b的权重归一化
// Normalize weights
for (i = 0; i < set_b->sample_count; i++)
{
sample_b = set_b->samples + i;
sample_b->weight /= total;
}
//将粒子sample集set_b的收敛状态设置得跟粒子sample集set_a一致
set_b->converged = set_a->converged;
}
7.对分布进行重采样
// Resample the distribution
void pf_update_resample(pf_t *pf)
{
int i;
double total;
//创建粒子sample集set_a,set_b
//创建粒子sample对象sample_a,sample_b
pf_sample_set_t *set_a, *set_b;
pf_sample_t *sample_a, *sample_b;
//double r,c,U;
//int m;
//double count_inv;
double* c;
//Attention:新的参数:w_diff!
double w_diff;
//初始化粒子sample集set_a,set_b,但是两个有点细微的区别
set_a = pf->sets + pf->current_set;
set_b = pf->sets + (pf->current_set + 1) % 2;
//如果选择性采样标志不等于0,那么:
if (pf->selective_resampling != 0)
{
//如果粒子sample集set_a的n_eff > 0.5 * (set_a的粒子sample数目),那么:
if (set_a->n_effective > 0.5*(set_a->sample_count))
{
//将粒子集set_a复制到set_b
// copy set a to b
copy_set(set_a,set_b);
//再次计算簇的统计特性,输入为pf和粒子sample集set_b
// Re-compute cluster statistics
pf_cluster_stats(pf, set_b);
//使用新创建的粒子sample集,其实就是对current_set的值刷新一下
// Use the newly created sample set
pf->current_set = (pf->current_set + 1) % 2;
return;
}
}
//结束选择性采样标识的判断,下面我们进入重头戏部分。这里弃用了低方差采样,改用传统的采样方法
// Build up cumulative probability table for resampling.
// TODO: Replace this with a more efficient procedure
// (e.g., http://www.network-theory.co.uk/docs/gslref/GeneralDiscreteDistributions.html)
//用粒子sample集set_a的粒子sample数目来创建c的内存
c = (double*)malloc(sizeof(double)*(set_a->sample_count+1));
c[0] = 0.0;
//根据粒子sample集set_a的粒子sample数目,遍历,遍历,
//从而将粒子sample集set_a的粒子sample对象的权重依次取出来,存在c里
for(i=0;i<set_a->sample_count;i++)
c[i+1] = c[i]+set_a->samples[i].weight;
//创建kdtree为选择性采样做准备
// Create the kd tree for adaptive sampling
pf_kdtree_clear(set_b->kdtree);
//从粒子sample集set_a中draw samples去创造粒子sample集set_b
// Draw samples from set a to create set b.
total = 0;
//将粒子sample集set_b的sample数目初始化为0
set_b->sample_count = 0;
//w_diff = 1.0 - w_fast/w_slow;
w_diff = 1.0 - pf->w_fast / pf->w_slow;
if(w_diff < 0.0)
w_diff = 0.0;//如果w_diff小于0,那就将w_diff置为0咯!
//printf("w_diff: %9.6f\n", w_diff);
//由于呢,KLD适应性采样不是那么容易用低方差采样实现,所以这里采用传统方法实现
// Can't (easily) combine low-variance sampler with KLD adaptive
// sampling, so we'll take the more traditional route.
/*
虽然这么说,代码的作者还是贴上了低方差采样原理的出处,当然是在《概率机器人》里了
// Low-variance resampler, taken from Probabilistic Robotics, p110
count_inv = 1.0/set_a->sample_count;
r = drand48() * count_inv;
c = set_a->samples[0].weight;
i = 0;
m = 0;
*/
//当粒子sample集set_b的sample数目小于粒子滤波器的sample的最大数目
while(set_b->sample_count < pf->max_samples)
{
//逐步从粒子sample集的set_b中取出sample对象
sample_b = set_b->samples + set_b->sample_count++;
//当随机数小于w_diff;w_diff的赋值在上面实现过了
if(drand48() < w_diff)
//使用随机生成位姿的模型生成sample_b的位姿;真够传统的方法呀,拍拍手。
sample_b->pose = (pf->random_pose_fn)(pf->random_pose_data);
//当随机数大于w_diff;那就复杂了,怎么生成sample_b的位姿呢?进入else吗?这里注释掉了
低方差重采样的代码实现,谁也没跑过,摊摊我的小手,我也不知道。
else
{
// Can't (easily) combine low-variance sampler with KLD adaptive
// sampling, so we'll take the more traditional route.
/*
//低方差重采样实现,实际上没用哦
// Low-variance resampler, taken from Probabilistic Robotics, p110
U = r + m * count_inv;
while(U>c)
{
i++;
// Handle wrap-around by resetting counters and picking a new random
// number
if(i >= set_a->sample_count)
{
r = drand48() * count_inv;
c = set_a->samples[0].weight;
i = 0;
m = 0;
U = r + m * count_inv;
continue;
}
c += set_a->samples[i].weight;
}
m++;
*/
//简单采样器
// Naive discrete event sampler
double r;
//生成随机数
r = drand48();
//遍历粒子sample集set_a,把c拉出来跟r做比较;
for(i=0;i<set_a->sample_count;i++)
{
if((c[i] <= r) && (r < c[i+1]))
break;
}
assert(i<set_a->sample_count);
//遍历粒子sample集set_a,将sample_a取出来
sample_a = set_a->samples + i;
assert(sample_a->weight > 0);
//把sample_a的位姿赋给sample_b
// Add sample to list
sample_b->pose = sample_a->pose;
}
//将sample_b的权重初始化为1
sample_b->weight = 1.0;
//计算sample_b所在set的权重和
total += sample_b->weight;
//把粒子sample_b添加到kdtree里,其实也就是添加到粒子sample集set_b里。
// Add sample to histogram(kdtree)
pf_kdtree_insert(set_b->kdtree, sample_b->pose, sample_b->weight);
//检查看是否有足够的粒子sample了呢?
//这里使用pf_resample_limit函数,输入为粒子sample集set_b的kdtree的叶子节点个数,这也代表
//着直方图的k个bin。
// See if we have enough samples yet
if (set_b->sample_count > pf_resample_limit(pf, set_b->kdtree->leaf_count))
break;
}
//重设w_slow和w_fast
// Reset averages, to avoid spiraling off into complete randomness.
if(w_diff > 0.0)
pf->w_slow = pf->w_fast = 0.0;
//fprintf(stderr, "\n\n");
// 使用for循环,遍历粒子sample集set_b,将sample_b权重归一化
for (i = 0; i < set_b->sample_count; i++)
{
sample_b = set_b->samples + i;
sample_b->weight /= total;
}
// 重新计算粒子sample集set_b的簇的统计特性
// Re-compute cluster statistics
pf_cluster_stats(pf, set_b);
//重新设置current_set的值
// Use the newly created sample set
pf->current_set = (pf->current_set + 1) % 2;
//粒子滤波器更新收敛
pf_update_converged(pf);
//释放c的内存
free(c);
return;
}
8.计算所需的粒子sample数目
给定直方图的bins的数目k,计算所需的粒子sample的数目,这个可真难呀!
// Compute the required number of samples, given that there are k bins
// with samples in them. (跟historgram有关)
//This is taken directly from Fox et al.
int pf_resample_limit(pf_t *pf, int k)
{
double a, b, c, x;
int n;
//如果k超出边界,那就返回粒子sample的最大数目
// Return max_samples in case k is outside expected range, this shouldn't
// happen, but is added to prevent any runtime errors 约束 && k
if (k < 1 || k > pf->max_samples)
return pf->max_samples;
//pf粒子滤波器 && limit_cache ,pop_err,pop_z;
// Return value if cache is valid, which means value is non-zero positive
if (pf->limit_cache[k-1] > 0)
return pf->limit_cache[k-1];
//如果k等于1呢,那也是返回粒子sample的最大数目
if (k == 1)
{
pf->limit_cache[k-1] = pf->max_samples;
return pf->max_samples;
}
//这里用到直方图的k,粒子滤波器的pop_err,pop_z;
a = 1;
b = 2 / (9 * ((double) k - 1));
c = sqrt(2 / (9 * ((double) k - 1))) * pf->pop_z;
x = a - b + c;
//这里计算得出n
n = (int) ceil((k - 1) / (2 * pf->pop_err) * x * x * x);
//如果n小于粒子sample的最小数目,那么返回粒子sample的最小数目
if (n < pf->min_samples)
{
pf->limit_cache[k-1] = pf->min_samples;
return pf->min_samples;
}
//如果n大于粒子sample的最小数目,那么返回粒子sample的最大数目
if (n > pf->max_samples)
{
pf->limit_cache[k-1] = pf->max_samples;
return pf->max_samples;
}
//如果n很听话呢,那就好好利用它吧!
pf->limit_cache[k-1] = n;
return n;
}
9.为一个粒子sample集重新计算其簇的均值/协方差进而得出粒子集合的均值/协方差
// Re-compute the cluster statistics for a sample set
void pf_cluster_stats(pf_t *pf, pf_sample_set_t *set)
{
int i, j, k, cidx;
pf_sample_t *sample;
pf_cluster_t *cluster;
// Workspace
double m[4], c[2][2];
size_t count;
double weight;
// Cluster the samples:聚集粒子sample成簇
pf_kdtree_cluster(set->kdtree);
// Initialize cluster stats:初始化簇的数目
set->cluster_count = 0;
//根据粒子sample集set的簇的最大数目,逐步遍历每个簇
for (i = 0; i < set->cluster_max_count; i++)
{
cluster = set->clusters + i;
cluster->count = 0;
cluster->weight = 0;
cluster->mean = pf_vector_zero();
cluster->cov = pf_matrix_zero();
for (j = 0; j < 4; j++)
cluster->m[j] = 0.0;
for (j = 0; j < 2; j++)
for (k = 0; k < 2; k++)
cluster->c[j][k] = 0.0;
}
//初始化滤波器的统计特性
// Initialize overall filter stats
count = 0;
weight = 0.0;
//粒子sample集的均值和协方差初始化
set->mean = pf_vector_zero();
set->cov = pf_matrix_zero();
for (j = 0; j < 4; j++)
m[j] = 0.0;
for (j = 0; j < 2; j++)
for (k = 0; k < 2; k++)
c[j][k] = 0.0;
//计算簇的统计特性
// Compute cluster stats
//遍历set的所有sample对象
for (i = 0; i < set->sample_count; i++)
{
sample = set->samples + i;
//printf("%d %f %f %f\n", i, sample->pose.v[0], sample->pose.v[1], sample->pose.v[2]);
//获得这个sample对象的簇标签
// Get the cluster label for this sample
cidx = pf_kdtree_get_cluster(set->kdtree, sample->pose);
assert(cidx >= 0);
//根据簇的最大数目来判断:
if (cidx >= set->cluster_max_count)
continue;
if (cidx + 1 > set->cluster_count)
set->cluster_count = cidx + 1;
//这里取出了簇对象
cluster = set->clusters + cidx;
//簇的数目加1,权重也接收了来自粒子sample对象的赋值
cluster->count += 1;
cluster->weight += sample->weight;
//粒子sample对象的权重也在统计着
count += 1;
weight += sample->weight;
//计算簇的均值
// Compute mean
cluster->m[0] += sample->weight * sample->pose.v[0];
cluster->m[1] += sample->weight * sample->pose.v[1];
cluster->m[2] += sample->weight * cos(sample->pose.v[2]);
cluster->m[3] += sample->weight * sin(sample->pose.v[2]);
//计算簇的均值的和:m[0],m[1],m[2],m[3]
m[0] += sample->weight * sample->pose.v[0];
m[1] += sample->weight * sample->pose.v[1];
m[2] += sample->weight * cos(sample->pose.v[2]);
m[3] += sample->weight * sin(sample->pose.v[2]);
//计算簇的协方差,先用双重for循环实现一个遍历
// Compute covariance in linear components
for (j = 0; j < 2; j++)
for (k = 0; k < 2; k++)
{
//对簇的协方差进行赋值
cluster->c[j][k] += sample->weight * sample->pose.v[j] * sample->pose.v[k];
//计算簇的协方差的和:c[j][k]
c[j][k] += sample->weight * sample->pose.v[j] * sample->pose.v[k];
}
}
// Normalize:归一化;使用for循环遍历粒子sample集的簇,将均值和协方差归一化
for (i = 0; i < set->cluster_count; i++)
{
cluster = set->clusters + i;
cluster->mean.v[0] = cluster->m[0] / cluster->weight;
cluster->mean.v[1] = cluster->m[1] / cluster->weight;
cluster->mean.v[2] = atan2(cluster->m[3], cluster->m[2]);
cluster->cov = pf_matrix_zero();
// Covariance in linear components:线性部分的协方差
for (j = 0; j < 2; j++)
for (k = 0; k < 2; k++)
cluster->cov.m[j][k] = cluster->c[j][k] / cluster->weight -
cluster->mean.v[j] * cluster->mean.v[k];
// Covariance in angular components; I think this is the correct
// formula for circular statistics.:角度部分的协方差
cluster->cov.m[2][2] = -2 * log(sqrt(cluster->m[2] * cluster->m[2] +
cluster->m[3] * cluster->m[3]));
}
//计算粒子sample集set的均值
// Compute overall filter stats
set->mean.v[0] = m[0] / weight;
set->mean.v[1] = m[1] / weight;
set->mean.v[2] = atan2(m[3], m[2]);
//计算粒子sample集set的线性方向的协方差
// Covariance in linear components
for (j = 0; j < 2; j++)
for (k = 0; k < 2; k++)
set->cov.m[j][k] = c[j][k] / weight - set->mean.v[j] * set->mean.v[k];
//计算粒子sample集set的角度方向的协方差
// Covariance in angular components; I think this is the correct
// formula for circular statistics.
set->cov.m[2][2] = -2 * log(sqrt(m[2] * m[2] + m[3] * m[3]));
return;
}
10.设置选择性采样
void pf_set_selective_resampling(pf_t *pf, int selective_resampling)
{
//这里将selective_resampling标识符简单设置一下即可
pf->selective_resampling = selective_resampling;
}
11.计算均值和协方差
这里相比前面简直太简单了,就不加注释了。
// Compute the CEP statistics (mean and variance).
void pf_get_cep_stats(pf_t *pf, pf_vector_t *mean, double *var)
{
int i;
double mn, mx, my, mrr;
pf_sample_set_t *set;
pf_sample_t *sample;
set = pf->sets + pf->current_set;
mn = 0.0;
mx = 0.0;
my = 0.0;
mrr = 0.0;
for (i = 0; i < set->sample_count; i++)
{
sample = set->samples + i;
mn += sample->weight;
mx += sample->weight * sample->pose.v[0];
my += sample->weight * sample->pose.v[1];
mrr += sample->weight * sample->pose.v[0] * sample->pose.v[0];
mrr += sample->weight * sample->pose.v[1] * sample->pose.v[1];
}
mean->v[0] = mx / mn;
mean->v[1] = my / mn;
mean->v[2] = 0.0;
*var = mrr / mn - (mx * mx / (mn * mn) + my * my / (mn * mn));
return;
}
12.获得一个粒子簇的统计特性:均值/协方差/权重
// Get the statistics for a particular cluster.
int pf_get_cluster_stats(pf_t *pf, int clabel, double *weight,
pf_vector_t *mean, pf_matrix_t *cov)
{
pf_sample_set_t *set;
pf_cluster_t *cluster;
set = pf->sets + pf->current_set;
if (clabel >= set->cluster_count)
return 0;
//注意这里的clabel哦!
cluster = set->clusters + clabel;
//这里取出簇的权重,均值和协方差
*weight = cluster->weight;
*mean = cluster->mean;
*cov = cluster->cov;
return 1;
好了,艰难地分析完了粒子滤波器所在的核心--pf.cpp,除了粒子滤波器这个磨人的小妖精,还有什么需要我们关心的呢?哎呀,搞了半天,kdtree是个啥呀?概率密度函数pdf咋生成的啊?这个协方差矩阵咋求解啊?怎么看到了eigen-descomposition(特征值分解)呢?那又怎么分解呢?
转自:6.AMCL包源码分析 | 粒子滤波器模型与pf文件夹(二) - 知乎 (zhihu.com)
标签:set,粒子,sample,cluster,AMCL,pf,samples,源码 来源: https://www.cnblogs.com/tdyizhen1314/p/16692805.html