编程语言
首页 > 编程语言> > 【优化算法】头脑风暴优化算法(BSO)【含Matlab源码 497期】

【优化算法】头脑风暴优化算法(BSO)【含Matlab源码 497期】

作者:互联网

一、简介

1 算法原理
头脑风暴优化算法主要由聚类和变异组成。
1.1 聚类
聚类:BSO采用K-means聚类算法,将相似的个体聚成k类,并将人为设定的适应度函数值最优的个体作为聚类的中心。当然,为了避免陷入局部最优,将有概率随机产生一个新个体替换其中
一个聚类中心。
1.2 变异
BSO变异主要有4种方式,分别是:(a)在随机一个类中心,即该类最优个体上添加随机扰动产生新的个体;(b)在随机一个类中随机选择一个个体添加随机扰动产生新的个体;©随机融合两个类中心,并添加随机扰动产生新的个体;(d)随机融合两个类中随机的两个个体,并添加随机扰动产生新的个体。
上述4种方式每个聚类中心,即类中最优个体
被选中的概率为:
在这里插入图片描述
2 算法流程
在这里插入图片描述

二、源代码

function best_fitness = bso2(fun,n_p,n_d,n_c,rang_l,rang_r,max_iteration)
% fun = fitness_function
% n_p; population size
% n_d; number of dimension
% n_c: number of clusters
% rang_l; left boundary of the dynamic range
% rang_r; right boundary of the dynamic range
prob_one_cluster = 0.8; % probability for select one cluster to form new individual; 
stepSize = ones(1,n_d); % effecting the step size of generating new individuals by adding random values
popu = rang_l + (rang_r - rang_l) * rand(n_p,n_d); % initialize the population of individuals
popu_sorted  = rang_l + (rang_r - rang_l) * rand(n_p,n_d); % initialize the  population of individuals sorted according to clusters
n_iteration = 0; % current iteration number
% initialize cluster probability to be zeros
prob = zeros(n_c,1);
best = zeros(n_c,1);  % index of best individual in each cluster
centers = rang_l + (rang_r - rang_l) * rand(n_c,n_d);  % initialize best individual in each cluster
centers_copy = rang_l + (rang_r - rang_l) * rand(n_c,n_d);  % initialize best individual-COPY in each cluster FOR the purpose of introduce random best
best_fitness = 1000000*ones(max_iteration,1);
fitness_popu = 1000000*ones(n_p,1);  % store fitness value for each individual
fitness_popu_sorted = 1000000*ones(n_p,1);  % store  fitness value for each sorted individual
indi_temp = zeros(1,n_d);  % store temperary individual
%**************************************************************************
%**************************************************************************
% calculate fitness for each individual in the initialized population
for idx = 1:n_p
    fitness_popu(idx,1) = fun(popu(idx,:));
end
while n_iteration < max_iteration
    cluster = kmeans(popu, n_c,'Distance','cityblock','Start',centers,'EmptyAction','singleton') % k-mean cluster
    % clustering    
    fit_values = 100000000000000000000000000.0*ones(n_c,1);  % assign a initial big fitness value  as best fitness for each cluster in minimization problems
    number_in_cluster = zeros(n_c,1);  % initialize 0 individual in each cluster      
    for idx = 1:n_p
        number_in_cluster(cluster(idx,1),1)= number_in_cluster(cluster(idx,1),1) + 1;        
        % find the best individual in each cluster
        if fit_values(cluster(idx,1),1) > fitness_popu(idx,1)  % minimization
            fit_values(cluster(idx,1),1) = fitness_popu(idx,1);
            best(cluster(idx,1),1) = idx;
        end            
    end  
    best
    % form population sorted according to clusters
    counter_cluster = zeros(n_c,1);  % initialize cluster counter to be 0     
    acculate_num_cluster = zeros(n_c,1);  % initialize accumulated number of individuals in previous clusters    
    for idx =2:n_c
        acculate_num_cluster(idx,1) = acculate_num_cluster((idx-1),1) + number_in_cluster((idx-1),1);
    end    
    %start form sorted population
    for idx = 1:n_p
        counter_cluster(cluster(idx,1),1) = counter_cluster(cluster(idx,1),1) + 1 ;
        temIdx = acculate_num_cluster(cluster(idx,1),1) +  counter_cluster(cluster(idx,1),1);
        popu_sorted(temIdx,:) = popu(idx,:);
        fitness_popu_sorted(temIdx,1) = fitness_popu(idx,1);
    end       
    % record the best individual in each cluster
    for idx = 1:n_c
        centers(idx,:) = popu(best(idx,1),:);        
    end
    centers_copy = centers  % make a copy
    
    if (rand() < 0.2) %  select one cluster center to be replaced by a randomly generated center
        cenIdx = ceil(rand()*n_c);
        centers(cenIdx,:) = rang_l + (rang_r - rang_l) * rand(1,n_d);
    end           
    % calculate cluster probabilities based on number of individuals in
    % each cluster
    for idx = 1:n_c
        prob(idx,1) = number_in_cluster(idx,1)/n_p;
        if idx > 1
            prob(idx,1) = prob(idx,1) + prob(idx-1,1);
        end
    end    
    % generate n_p new individuals by adding Gaussian random values                   
    for idx = 1:n_p
        r_1 = rand();  % probability for select one cluster to form new individual
        if r_1 < prob_one_cluster % select one cluster
            r = rand();
            for idj = 1:n_c
                if r < prob(idj,1)                      
                    if rand() < 0.4  % use the center
                       indi_temp(1,:) = centers(idj,:); 
                    else % use one randomly selected  cluster
                        indi_1 = acculate_num_cluster(idj,1) + ceil(rand() * number_in_cluster(idj,1));
                        indi_temp(1,:) = popu_sorted(indi_1,:);  
                    end
                    break
                end
            end
        else % select two clusters
            % pick two clusters 
            cluster_1 = ceil(rand() * n_c);
            indi_1 = acculate_num_cluster(cluster_1,1) + ceil(rand() * number_in_cluster(cluster_1,1));          
            cluster_2 = ceil(rand() * n_c);
            indi_2 = acculate_num_cluster(cluster_2,1) + ceil(rand() * number_in_cluster(cluster_2,1));         
            tem = rand();
            if rand() < 0.5 %use center
                indi_temp(1,:) = tem * centers(cluster_1,:) + (1-tem) * centers(cluster_2,:); 
            else   % use randomly selected individuals from each cluster            
                indi_temp(1,:) = tem * popu_sorted(indi_1,:) + (1-tem) * popu_sorted(indi_2,:); 
            end
        end      
        %Griewank
function z = griewank(x)
% unimodal optimum 0
[m,n]=size(x);
for j=1:m
    for e=1:n
        f1(e)=x(j,e)^2;
        f2(e)=cos(x(j,e)/sqrt(e));
    end           

三、运行结果

在这里插入图片描述

四、备注

版本:2014a

标签:rand,rang,idx,cluster,算法,源码,popu,fitness,优化
来源: https://blog.csdn.net/TIQCmatlab/article/details/118299787