Hive的行转列列转行函数使用
作者:互联网
行转列:
函数说明:
CONCAT(string A/col, string B/col…):返回输入字符串连接后的结果,支持任意个输入字
符串;
CONCAT_WS(separator, str1, str2,...):它是一个特殊形式的 CONCAT()。第一个参数剩余参
数间的分隔符。分隔符可以是与剩余参数一样的字符串。如果分隔符是 NULL,返回值也将
为 NULL。这个函数会跳过分隔符参数后的任何 NULL 和空字符串。分隔符将被加到被连接
的字符串之间;
注意: CONCAT_WS must be "string or array<string>
COLLECT_SET(col):函数只接受基本数据类型,它的主要作用是将某字段的值进行去重
汇总,产生 Array 类型字段。
数据准备:
name | constellation | blood_type |
孙悟空 | 白羊座 | A |
大海 | 射手座 | A |
宋宋 | 白羊座 | B |
猪八戒 | 白羊座 | A |
凤姐 | 射手座 | A |
苍老师 | 白羊座 | B |
需求:
把星座和血型一样的人归类到一起。结果如下:
射手座,A 大海|凤姐
白羊座,A 孙悟空|猪八戒
白羊座,B 宋宋|苍老师
创建本地 constellation.txt,导入数据
vim constellation.txt
孙悟空 白羊座 A
大海 射手座 A
宋宋 白羊座 B
猪八戒 白羊座 A
凤姐 射手座 A
苍老师 射手座 A
创建 hive 表并导入数据:
create table person_info(
name string,
constellation string,
blood_type string)
row format delimited fields terminated by "\t";
load data local inpath "/export/servers/apache-hive-2.1.1-bin/datas/constellation.txt"
into table person_info;
按需求查询数据:
SELECT
t1.c_b,
CONCAT_WS("|",collect_set(t1.name))
FROM (
SELECT
NAME,
CONCAT_WS(',',constellation,blood_type) c_b
FROM person_info
)t1
GROUP BY t1.c_b
列转行:
函数说明:
EXPLODE(col):将 hive 一列中复杂的 Array 或者 Map 结构拆分成多行。
LATERAL VIEW
用法:LATERAL VIEW udtf(expression) tableAlias AS columnAlias
解释:用于和 split, explode 等 UDTF 一起使用,它能够将一列数据拆成多行数据,在此
基础上可以对拆分后的数据进行聚合。
数据准备:
movie | category |
《疑犯追踪》 | 悬疑,动作,科幻,剧情 |
《Lie to me》 | 悬疑,警匪,动作,心理,剧情 |
《战狼 2》 | 战争,动作,灾难 |
需求:
将电影分类中的数组数据展开。结果如下:
《疑犯追踪》 悬疑
《疑犯追踪》 动作
《疑犯追踪》 科幻
《疑犯追踪》 剧情
《Lie to me》 悬疑
《Lie to me》 警匪
《Lie to me》 动作
《Lie to me》 心理
《Lie to me》 剧情
《战狼 2》 战争
《战狼 2》 动作
《战狼 2》 灾难
创建本地 movie.txt,导入数据:
vi movie_info.txt《疑犯追踪》 悬疑,动作,科幻,剧情
《Lie to me》悬疑,警匪,动作,心理,剧情
《战狼 2》 战争,动作,灾难
创建 hive 表并导入数据:
create table movie_info(
movie string,
category string)
row format delimited fields terminated by "\t";
load data local inpath "/export/servers/apache-hive-2.1.1-bin/datas/movie.txt"
into table movie_info;
按需求查询数据:
SELECT
movie,
category_name
FROM
movie_info
lateral VIEW
explode(split(category,",")) movie_info_tmp AS category_name;
标签:info,me,string,Lie,movie,转行,Hive,转列,白羊座 来源: https://blog.csdn.net/weixin_42759988/article/details/117402717