一篇文章搞懂数据仓库:总线架构、一致性维度、一致性事实
作者:互联网
目录
1、概述
在Kimball的维度建模的数据仓库中,关于多维体系结构(MD)有三个关键性概念:总线架构(Bus Architecture),一致性维度(Conformed Dimension)和一致性事实(Conformed Fact)
。
总线架构
多维体系结构(总线架构) 数据仓库领域里,有一种构建数据仓库的架构,叫Multidimensional Architecture(MD),中文一般翻译为“多维体系结构”,也称为“总线架构”(Bus Architecture)。多维体系结构的创始人是数据仓库领域中最有实践经验的Kimball博士。多维体系结构主要包括后台(Back Room)和前台(Front Room)两部分。后台也称为数据准备区(Staging Area),是MD架构的最为核心的部件。在后台,是一致性维度的产生、保存和分发的场所。同时,代理键也在后台产生。前台是MD架构对外的接口,包括两种主要的数据集市,一种是原子数据集市,另一种是聚集数据集市。
原子数据集市保存着最低粒度的细节数据,数据以星型结构来进行数据存储。聚集数据集市的粒度通常比原子数据集市要高,和原子数据集市一样,聚集数据集市也是以星型结构来进行数据存储。
前台还包括像查询管理、活动监控等为了提供数据仓库的性能和质量的服务。在多维体系结构中,所有的这些基于星型结构来建立的数据集市可以在物理上存在于一个数据库实例中,也可以分散在不同的机器上,而所有这些数据集市的集合组成的分布式的数据仓库。
一致性维度
在多维体系结构中,没有物理上的数据仓库,由物理上的数据集市组合成逻辑上的数据仓库。而且数据集市的建立是可以逐步完成的,最终组合在一起,成为一个数据仓库。如果分步建立数据集市的过程出现了问题,数据集市就会变成孤立的集市,不能组合成数据仓库,而一致性维度的提出正是为了解决这个问题。一致性维度的范围是总线架构中的维度,即可能会在多个数据集市中都存在的维度,这个范围的选取需要架构师来决定。一致性维度的内容和普通维度并没有本质上区别,都是经过数据清洗和整合后的结果。 一致性维度建立的地点是多维体系结构的后台(Back Room),即数据准备区。
在多维体系结构的数据仓库项目组内需要有专门的维度设计师,他的职责就是建立维度和维护维度的一致性。在后台建立好的维度同步复制到各个数据集市。这样所有数据集市的这部分维度都是完全相同的。建立新的数据集市时,需要在后台进行一致性维度处理,根据情况来决定是否新增和修改一致性维度,然后同步复制到各个数据集市。这是不同数据集市维度保持一致的要点。
在同一个集市内,一致性维度的意思是两个维度如果有关系,要么就是完全一样的,要么就是一个维度在数学意义上是另一个维度的子集。
例如,如果建立月维度话,月维度的各种描述必须与日期维度中的完全一致,最常用的做法就是在日期维度上建立视图生成月维度。这样月维度就可以是日期维度的子集,在后续钻取等操作时可以保持一致。如果维度表中的数据量较大,出于效率的考虑,应该建立物化视图或者实际的物理表。这样,维度保持一致后,事实就可以保存在各个数据集市中。虽然在物理上是独立的,但在逻辑上由一致性维度使所有的数据集市是联系在一起,随时可以进行交叉探察等操作,也就组成了数据仓库。
一致性事实
在建立多个数据集市时,完成一致性维度的工作就已经完成了一致性的80%-90%的工作量。余下的工作就是建立一致性事实。一致性事实和一致性维度有些不同,一致性维度是由专人维护在后台(Back Room),发生修改时同步复制到每个数据集市,而事实表一般不会在多个数据集市间复制。需要查询多个数据集市中的事实时,一般通过交叉探查(drill across)来实现。为了能在多个数据集市间进行交叉探查,一致性事实主要需要保证两点:第一个是KPI的定义及计算方法要一致,第二个是事实的单位要一致性。如果业务要求或事实上就不能保持一致的话,建议不同单位的事实分开建立字段保存。
这样,一致性维度将多个数据集市结合在一起,一致性事实保证不同数据集市间的事实数据可以交叉探查,一个分布式的数据仓库就建成了。
2、总线架构demo
小结
1、总线矩阵:业务过程和维度的交点;
一致性维度:同一集市的维度表,内容相同或包含;
一致性事实:不同集市的同一事实,需保证口径一致,单位统一。
2、追求一致性必然会增加开发工作量,但长期来说,使用方便、运维简单;一致性和性能,需要平衡。
标签:架构,数据仓库,维度,集市,一致性,搞懂,数据 来源: https://blog.csdn.net/qq_36039236/article/details/117384093