Hadoop[03-03]基于DFS与ZKFC访问计数测试(Hadoop2.0)
作者:互联网
Hadoop[03-03]基于DFS与ZKFC访问计数测试(Hadoop2.0)
准备环境
准备多台虚拟机,启动dfs和zookeeper
详见链接:Hadoop2.0 启动DFS和Zookeeper
多台虚拟机部分数据如下
编号 | 主机名 | 主机域名 | ip地址 |
---|---|---|---|
① | Toozky | Toozky | 192.168.64.220 |
② | Toozky2 | Toozky2 | 192.168.64.221 |
③ | Toozky3 | Toozky3 | 192.168.64.222 |
设置ssh免密连接
详见链接: Linux虚拟机ssh免密连接
资源列表
软件 | 软件版本 |
---|---|
VMware | VMware® Workstation 16 Pro |
Xshell | 6 |
filezilla | 3.7.3 |
启动zookeeper、dfs
虚拟机①、②、③
zkServer.sh start
虚拟机①
以虚拟机①为namenode为例
start-all.sh
测试上传文件访问计数
IDEA创建普通Maven项目
pom.xml
project
标签中
dependencies
标签中添加依赖
<dependencies>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-common</artifactId>
<version>${hadoop.version}</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-hdfs</artifactId>
<version>${hadoop.version}</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-client</artifactId>
<version>${hadoop.version}</version>
</dependency>
<!--日志依赖-->
<dependency>
<groupId>org.slf4j</groupId>
<artifactId>slf4j-log4j12</artifactId>
<version>1.6.1</version>
</dependency>
<dependency>
<groupId>log4j</groupId>
<artifactId>log4j</artifactId>
<version>1.2.17</version>
</dependency>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>4.11</version>
</dependency>
</dependencies>
添加build
<build>
<!--指定visitcount为导出jar名称-->
<finalName>visitcount</finalName>
<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-assembly-plugin</artifactId>
<version>3.0.0</version>
<configuration>
<archive>
<manifest>
<!--指定程序主类-->
<mainClass>mapreduce.WordCountJobRun</mainClass>
</manifest>
</archive>
<descriptorRefs>
<!--指定jar包名称追加描述-->
<!--导出jar包名称为visitcount-jar-with-dependencies.jar-->
<descriptorRef>jar-with-dependencies</descriptorRef>
</descriptorRefs>
</configuration>
<executions>
<execution>
<id>make-assembly</id>
<phase>package</phase>
<goals>
<goal>single</goal>
</goals>
</execution>
</executions>
</plugin>
</plugins>
</build>
mapreduce
在项目的main/java目录创建mapreduce层
VisitCountMapper.java
在mapreduce层创建VisitCountMapper.java
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import java.io.IOException;
public class VisitCountMapper extends Mapper<LongWritable, Text,Text,LongWritable> {
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
String s = value.toString();
String[] split = s.split(" ");
for (int i = 6; i < split.length; i+=9) {
context.write(new Text(split[i]),new LongWritable(1));
}
}
}
由于数据文件以空格分隔字段(且换行符不分隔字段),且网址列是有规律的,所以for循环设置起始遍历下标为6,自增为9
如上图所示,第7、16、25……(9n-2)个为网址字段
所以下标取第6、15、24……(9n-3)
VisitCountReducer.java
在mapreduce层创建VisitCountReducer.java
编辑计数程序
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
import java.io.IOException;
public class VisitCountReducer extends Reducer<Text, LongWritable, Text,LongWritable> {
@Override
protected void reduce(Text key, Iterable<LongWritable> values, Context context) throws IOException, InterruptedException {
Long sum=0l;
for (LongWritable iterable : values) {
sum+=iterable.get();
}
context.write(key,new LongWritable(sum));
}
}
VisitCountJobRun.java
在mapreduce层创建VisitCountJobRun.java
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import java.io.IOException;
public class VisitCountJobRun {
public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
System.setProperty("HADOOP_USER_NAME", "root");
Configuration conf=new Configuration();
Job job=new Job(conf);
//String Hadoop_Url = "hdfs://Toozky:8020";
job.setJarByClass(VisitCountJobRun.class);
job.setMapperClass(VisitCountMapper.class);
job.setReducerClass(VisitCountReducer.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(LongWritable.class);
//job.setNumReduceTasks(1); 设置reduce 任务的个数
//输入数据文件
FileInputFormat.addInputPath(job,new Path("/input/logs.txt"));
//输出数据文件
FileOutputFormat.setOutputPath(job,new Path("/output/logs_deal"));
//提交job
boolean result = job.waitForCompletion(true);
//执行成功后进行后续操作
if (result) {
System.out.println("访问计数任务已完成!");
}
}
}
通过下面相关设置文件的配置,程序就无需指定namenode域名了,而工作方式会变为,自行访问namenode(active)的地址
resources
在项目的/src/main/resources目录(若无则创建resources目录)
将hadoop安装目录中的core-site.xml、hdfs-site.xml、mapred-site.xml拷贝到resources
(虚拟机/home/hadoop2.6/etc/hadoop
中,使用filezilla下载文件到本地)
core-site.xml
<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration>
<property>
<name>fs.defaultFS</name>
<value>hdfs://dfbz</value>
</property>
<property>
<name>ha.zookeeper.quorum</name>
<value>Toozky:2181,Toozky2:2181,Toozky3:2181</value>
</property>
<property>
<name>hadoop.tmp.dir</name>
<value>/opt/hadoop2.6</value>
</property>
</configuration>
hdfs-site.xml
<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration>
<property>
<name>dfs.nameservices</name>
<value>dfbz</value>
</property>
<property>
<name>dfs.ha.namenodes.dfbz</name>
<value>nn1,nn2</value>
</property>
<property>
<name>dfs.namenode.rpc-address.dfbz.nn1</name>
<value>Toozky:8020</value>
</property>
<property>
<name>dfs.namenode.rpc-address.dfbz.nn2</name>
<value>Toozky2:8020</value>
</property>
<property>
<name>dfs.namenode.http-address.dfbz.nn1</name>
<value>Toozky:50070</value>
</property>
<property>
<name>dfs.namenode.http-address.dfbz.nn2</name>
<value>Toozky2:50070</value>
</property>
<property>
<name>dfs.namenode.shared.edits.dir</name>
<value>qjournal://Toozky:8485;Toozky2:8485;Toozky3:8485/dfbz</value>
</property>
<property>
<name>dfs.client.failover.proxy.provider.dfbz</name>
<value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider</value>
</property>
<property>
<name>dfs.ha.fencing.methods</name>
<value>sshfence</value>
</property>
<property>
<name>dfs.ha.fencing.ssh.private-key-files</name>
<value>/root/.ssh/id_dsa</value>
</property>
<property>
<name>dfs.journalnode.edits.dir</name>
<value>/opt/journal/node/local/data</value>
</property>
<property>
<name>dfs.ha.automatic-failover.enabled</name>
<value>true</value>
</property>
</configuration>
mapred-site.xml
<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration>
<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>
</property>
</configuration>
导出访问计数jar包,上传测试数据文件
visitcount-jar-with-dependencies.jar
单击IDEA右侧Maven菜单展开项目,点击package打包(导出jar包)
点击package后会在项目中生成target目录,选中所需要的jar包,ctrl+c复制
将visitcount-jar-with-dependencies.jar粘贴到方便操作的位置,并用filezilla发送到虚拟机①的/root目录
logs.txt
logs.txt文件中的测试数据如下
文件是Tomcat安装目录的logs的localhost_access_log.xxxx_xx_xx.txt
复制重命名为logs.txt得到
用filezilla将logs.txt文件上传至虚拟机①的/root目录
上传测试数据至HDFS
在虚拟机①中验证上传情况
cd
ls
在DFS系统中创建/input目录,用于存放处理前的相关文件
hadoop dfs -mkdir /input
补充:
DFS中目录的删除hadoop dfs -rmr /目录或文件名
发送logs.txt到HDFS
cd
hadoop dfs -put logs.txt /input/
执行TestVisitCount项目
运行jar文件
cd
hadoop jar visitcount-jar-with-dependencies.jar
访问计数验证
浏览器验证
在浏览器地址栏输入Toozky:50070
回车(namenode(active)域名:50070)
点击Browse the file system进入DFS文件系统
点击output查看输出目录,点击logs_deal
看到_SUCCESS
字样则为操作成功
点击 part-r-00000下载文件点击Download下载文件验证结果
以上就是本期总结的全部内容,愿大家相互学习,共同进步!
标签:03,mapreduce,Hadoop,dfs,hadoop,import,apache,org,Hadoop2.0 来源: https://blog.csdn.net/u012175183/article/details/117355519