如何合理地估算线程池大小?
作者:互联网
这个问题虽然看起来很小,却并不那么容易回答。
大家如果有更好的方法欢迎赐教,先来一个天真的估算方法:
假设要求一个系统的TPS(Transaction Per Second或者Task Per Second)至少为20,然后假设每个Transaction由一个线程完成,继续假设平均每个线程处理一个Transaction的时间为4s。
那么问题转化为:如何设计线程池大小,使得可以在1s内处理完20个Transaction?
计算过程很简单,每个线程的处理能力为0.25TPS,那么要达到20TPS,显然需要20/0.25=80个线程。
很显然这个估算方法很天真,因为它没有考虑到CPU数目。一般服务器的CPU核数为16或者32,如果有80个线程,那么肯定会带来太多不必要的线程上下文切换开销。
再来第二种简单的但不知是否可行的方法(N为CPU总核数):
- 如果是CPU密集型应用,则线程池大小设置为N+1
- 如果是IO密集型应用,则线程池大小设置为2N+1
如果一台服务器上只部署这一个应用并且只有这一个线程池,那么这种估算或许合理,具体还需自行测试验证。
接下来在这个文档:服务器性能IO优化 中发现一个估算公式:
最佳线程数目 = ((线程等待时间+线程CPU时间)/线程CPU时间 )* CPU数目
比如平均每个线程CPU运行时间为0.5s,而线程等待时间(非CPU运行时间,比如IO)为1.5s,CPU核心数为8,那么根据上面这个公式估算得到:((0.5+1.5)/0.5)*8=32。这个公式进一步转化为:
最佳线程数目 = (线程等待时间与线程CPU时间之比 + 1)* CPU数目
可以得出一个结论:线程等待时间所占比例越高,需要越多线程。线程CPU时间所占比例越高,需要越少线程。
上一种估算方法也和这个结论相合。
一个系统最快的部分是CPU,所以决定一个系统吞吐量上限的是CPU。增强CPU处理能力,可以提高系统吞吐量上限。但根据短板效应,真实的系统吞吐量并不能单纯根据CPU来计算。那要提高系统吞吐量,就需要从“系统短板”(比如网络延迟、IO)着手:
- 尽量提高短板操作的并行化比率,比如多线程下载技术
- 增强短板能力,比如用NIO替代IO
第一条可以联系到Amdahl定律,这条定律定义了串行系统并行化后的加速比计算公式:
加速比=优化前系统耗时 / 优化后系统耗时
加速比越大,表明系统并行化的优化效果越好。Addahl定律还给出了系统并行度、CPU数目和加速比的关系,加速比为Speedup,系统串行化比率(指串行执行代码所占比率)为F,CPU数目为N:
Speedup <= 1 / (F + (1-F)/N)
当N足够大时,串行化比率F越小,加速比Speedup越大。
写到这里,我突然冒出一个问题。
是否使用线程池就一定比使用单线程高效呢?
答案是否定的,比如Redis就是单线程的,但它却非常高效,基本操作都能达到十万量级/s。从线程这个角度来看,部分原因在于:
- 多线程带来线程上下文切换开销,单线程就没有这种开销
- 锁
当然“Redis很快”更本质的原因在于:Redis基本都是内存操作,这种情况下单线程可以很高效地利用CPU。而多线程适用场景一般是:存在相当比例的IO和网络操作。
所以即使有上面的简单估算方法,也许看似合理,但实际上也未必合理,都需要结合系统真实情况(比如是IO密集型或者是CPU密集型或者是纯内存操作)和硬件环境(CPU、内存、硬盘读写速度、网络状况等)来不断尝试达到一个符合实际的合理估算值。
最后来一个“Dark Magic”估算方法(因为我暂时还没有搞懂它的原理),使用下面的类:
package threadpool; import java.math.BigDecimal; import java.math.RoundingMode; import java.util.Timer; import java.util.TimerTask; import java.util.concurrent.BlockingQueue; /** * A class that calculates the optimal thread pool boundaries. It takes the * desired target utilization and the desired work queue memory consumption as * input and retuns thread count and work queue capacity. * * @author Niklas Schlimm */ public abstract class PoolSizeCalculator { /** * The sample queue size to calculate the size of a single {@link Runnable} * element. */ private final int SAMPLE_QUEUE_SIZE = 1000; /** * Accuracy of test run. It must finish within 20ms of the testTime * otherwise we retry the test. This could be configurable. */ private final int EPSYLON = 20; /** * Control variable for the CPU time investigation. */ private volatile boolean expired; /** * Time (millis) of the test run in the CPU time calculation. */ private final long testtime = 3000; /** * Calculates the boundaries of a thread pool for a given {@link Runnable}. * * @param targetUtilization the desired utilization of the CPUs (0 <= targetUtilization 5) { throw new IllegalStateException("Test not accurate"); } expired = false; start = System.currentTimeMillis(); Timer timer = new Timer(); timer.schedule(new TimerTask() { public void run() { expired = true; } }, testtime); while (!expired) { task.run(); } start = System.currentTimeMillis() - start; timer.cancel(); } while (Math.abs(start - testtime) > EPSYLON); collectGarbage(3); } private void collectGarbage(int times) { for (int i = 0; i < times; i++) { System.gc(); try { Thread.sleep(10); } catch (InterruptedException e) { Thread.currentThread().interrupt(); break; } } } /** * Calculates the memory usage of a single element in a work queue. Based on * Heinz Kabbutz' ideas * (http://www.javaspecialists.eu/archive/Issue029.html). * * @return memory usage of a single {@link Runnable} element in the thread * pools work queue */ public long calculateMemoryUsage() { BlockingQueue queue = createWorkQueue(); for (int i = 0; i < SAMPLE_QUEUE_SIZE; i++) { queue.add(creatTask()); } long mem0 = Runtime.getRuntime().totalMemory() - Runtime.getRuntime().freeMemory(); long mem1 = Runtime.getRuntime().totalMemory() - Runtime.getRuntime().freeMemory(); queue = null; collectGarbage(15); mem0 = Runtime.getRuntime().totalMemory() - Runtime.getRuntime().freeMemory(); queue = createWorkQueue(); for (int i = 0; i < SAMPLE_QUEUE_SIZE; i++) { queue.add(creatTask()); } collectGarbage(15); mem1 = Runtime.getRuntime().totalMemory() - Runtime.getRuntime().freeMemory(); return (mem1 - mem0) / SAMPLE_QUEUE_SIZE; } /** * Create your runnable task here. * * @return an instance of your runnable task under investigation */ protected abstract Runnable creatTask(); /** * Return an instance of the queue used in the thread pool. * * @return queue instance */ protected abstract BlockingQueue createWorkQueue(); /** * Calculate current cpu time. Various frameworks may be used here, * depending on the operating system in use. (e.g. * http://www.hyperic.com/products/sigar). The more accurate the CPU time * measurement, the more accurate the results for thread count boundaries. * * @return current cpu time of current thread */ protected abstract long getCurrentThreadCPUTime(); }
然后自己继承这个抽象类并实现它的三个抽象方法,比如下面是我写的一个示例(任务是请求网络数据),其中我指定期望CPU利用率为1.0(即100%),任务队列总大小不超过100,000字节:
package threadpool; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.lang.management.ManagementFactory; import java.math.BigDecimal; import java.net.HttpURLConnection; import java.net.URL; import java.util.concurrent.BlockingQueue; import java.util.concurrent.LinkedBlockingQueue; public class SimplePoolSizeCaculatorImpl extends PoolSizeCalculator { @Override protected Runnable creatTask() { return new AsyncIOTask(); } @Override protected BlockingQueue createWorkQueue() { return new LinkedBlockingQueue(1000); } @Override protected long getCurrentThreadCPUTime() { return ManagementFactory.getThreadMXBean().getCurrentThreadCpuTime(); } public static void main(String[] args) { PoolSizeCalculator poolSizeCalculator = new SimplePoolSizeCaculatorImpl(); poolSizeCalculator.calculateBoundaries(new BigDecimal(1.0), new BigDecimal(100000)); } } /** * 自定义的异步IO任务 * @author Will * */ class AsyncIOTask implements Runnable { public void run() { HttpURLConnection connection = null; BufferedReader reader = null; try { String getURL = "http://baidu.com"; URL getUrl = new URL(getURL); connection = (HttpURLConnection) getUrl.openConnection(); connection.connect(); reader = new BufferedReader(new InputStreamReader( connection.getInputStream())); String line; while ((line = reader.readLine()) != null) { // empty loop } } catch (IOException e) { } finally { if(reader != null) { try { reader.close(); } catch(Exception e) { } } connection.disconnect(); } } }
得到如下输出:
Target queue memory usage (bytes): 100000 createTask() produced threadpool.AsyncIOTask which took 40 bytes in a queue Formula: 100000 / 40 * Recommended queue capacity (bytes): 2500 Number of CPU: 8 Target utilization: 1 Elapsed time (nanos): 3000000000 Compute time (nanos): 280801800 Wait time (nanos): 2719198200 Formula: 8 * 1 * (1 + 2719198200 / 280801800) * Optimal thread count: 88
推荐的任务队列大小为2500,线程数为88。依次为依据,我们就可以构造这样一个线程池:
ThreadPoolExecutor pool = new ThreadPoolExecutor(88, 88, 0L, TimeUnit.MILLISECONDS, new LinkedBlockingQueue(2500));
可以将这个文件打包成可执行的jar文件,这样就可以拷贝到测试/正式环境上执行。
4.0.0threadpooldark-magic1.0-SNAPSHOTjardark_magichttp://maven.apache.orgUTF-8dark-magicmaven-assembly-pluginfalsejar-with-dependenciesthreadpool.SimplePoolSizeCaculatorImplmake-assemblypackageassembly
标签:java,估算,线程,IO,new,import,合理,CPU 来源: https://blog.51cto.com/u_15222959/2816583