MNN的安装以及新增onnx算子
作者:互联网
MNN的安装以及新增onnx算子
ubuntu 上安装mnn
参考链接:https://www.yuque.com/mnn/cn/build_linux
git clone https://gitee.com/mirrors/mnn.git
cd MNN/
cd schema/
./generate.sh && cd ../
mkdir build && cd build
sudo apt-get install libprotobuf-dev protobuf-compiler
cmake .. -DMNN_BUILD_CONVERTER=true #加了编译选项 生成转换工具
make -j8
如果源码编译 pymnn,则按下面步骤即可
git clone https://gitee.com/mirrors/mnn.git
cd MNN/
cd schema/
./generate.sh && cd ../
cd pymnn/pip_package
python build_deps.py
python build_wheel.py
使用pymnn遇到的错误
源码编译pymnn,编译完之后使用mnn命令会出现下面错误,原因是libprotobuf找不到
ImportError: /home/cc/miniconda3/envs/pymnn/lib/python3.6/site-packages/MNN-0.0.9-py3.6-linux-x86_64.egg/_tools.cpython-36m-x86_64-linux-gnu.so: undefined symbol: _ZTIN6google8protobuf7MessageE
解决办法:修改pymnn/pip_package/setup.py 给定libprotobuf绝对路径
#tools_extra_link_args += ['-l:libprotobuf.a']
tools_extra_link_args += ['/usr/local/lib/libprotobuf.a']
编译时下面这个错误是因为没有带fPIC编译的protobuf引起
cc1plus: warning: command line option ‘-Wstrict-prototypes’ is valid for C/ObjC but not for C++
g++ -pthread -shared -B /home/cc/miniconda3/envs/pymnn/compiler_compat -L/home/cc/miniconda3/envs/pymnn/lib -Wl,-rpath=/home/cc/miniconda3/envs/pymnn/lib -Wl,--no-as-needed -Wl,--sysroot=/ build/temp.linux-x86_64-3.6/media/cc/0D2C17A90D2C17A9/git_clone/MNN/mnn/pymnn/src/MNNTools.o build/temp.linux-x86_64-3.6/media/cc/0D2C17A90D2C17A9/git_clone/MNN/mnn/tools/quantization/calibration.o build/temp.linux-x86_64-3.6/media/cc/0D2C17A90D2C17A9/git_clone/MNN/mnn/tools/quantization/TensorStatistic.o build/temp.linux-x86_64-3.6/media/cc/0D2C17A90D2C17A9/git_clone/MNN/mnn/tools/quantization/quantizeWeight.o build/temp.linux-x86_64-3.6/media/cc/0D2C17A90D2C17A9/git_clone/MNN/mnn/tools/quantization/Helper.o -L/media/cc/0D2C17A90D2C17A9/git_clone/MNN/mnn/pymnn_build -L/media/cc/0D2C17A90D2C17A9/git_clone/MNN/mnn/pymnn_build/tools/converter -o build/lib.linux-x86_64-3.6/_tools.cpython-36m-x86_64-linux-gnu.so -Wl,--whole-archive -lMNN -lMNNConvertDeps /usr/local/lib/libprotobuf.a -Wl,--no-whole-archive -lz -Wl,-rpath,$ORIGIN/lib
/home/cc/miniconda3/envs/pymnn/compiler_compat/ld: /usr/local/lib/libprotobuf.a(arena.o): relocation R_X86_64_TPOFF32 against symbol `_ZN6google8protobuf8internal9ArenaImpl13thread_cache_E' can not be used when making a shared object; recompile with -fPIC
/home/cc/miniconda3/envs/pymnn/compiler_compat/ld: /usr/local/lib/libprotobuf.a(time.o): relocation R_X86_64_PC32 against symbol `_ZN6google8protobuf8internal17DateTimeToSecondsERKNS1_8DateTimeEPl' can not be used when making a shared object; recompile with -fPIC
/home/cc/miniconda3/envs/pymnn/compiler_compat/ld: final link failed: bad value
collect2: error: ld returned 1 exit status
error: command 'g++' failed with exit status 1
解决方法:重新编译protobuf,下面是源码编译 protobuf的操作
./autogen.sh
./configure CFLAGS="-fPIC" CXXFLAGS="-fPIC"
make
make check
sudo make install
sudo ldconfig
使用mnn时出现
import MNN.tools.mnn_fb.OpType as OpType
AttributeError: module 'MNN' has no attribute 'tools'
解决办法:修改出错文件
import MNN.tools.mnn_fb.OpType as OpType
import MNN.tools.utils.getkey as GetKey
改成如下所示
import sys
sys.path.append("/home/cc/miniconda3/envs/pymnn/lib/python3.6/site-packages/MNN/tools")
import mnn_fb.OpType as OpType
import utils.getkey as GetKey
MNN增加自定义算子
参考文档:https://www.yuque.com/mnn/cn/customize_op
1. 添加模型描述
若添加的算子不在MNN的算子列表中,需要添加模型描述。修改完模型描述后,需要调用generate脚本重新生成模型描述头文件。
-
添加算子类型
在schema/default/MNN.fbs
文件的OpType列表里追加算子名称,未添加算子类型
-
添加算子参数描述
- 在
schema/default/MNN.fbs
文件的OpParameter
列表中添加了“TanHParam”
union OpParameter {
TanHParam,
QuantizedAdd,
ArgMax,
- 添加参数描述:在
TensorflowOp.fbs
中添加TanHParam
的参数描述,以及在ReductionType
中添加NORML2
描述
enum TanHType : byte{
TanH=0,
Tanh=1,
}
table TanHParam{
operation:TanHType;
}
enum ReductionType : byte{
SUM = 0,
ASUM = 1,
SUMSQ = 2,
MEAN = 3,
MAXIMUM = 4,
MINIMUM = 5,
PROD = 6,
ANY = 7,
ALL = 8,
NORML2 = 9,
}
2. 添加模型转换
- 在
/tools/converter/source/onnx
下添加MyMatMulOnnx.cpp
和TanhOnnx.cpp
#include <stdio.h>
#include "onnxOpConverter.hpp"
DECLARE_OP_CONVERTER(MyMatMulOnnx);
MNN::OpType MyMatMulOnnx::opType() {
return MNN::OpType_MatMul;
}
MNN::OpParameter MyMatMulOnnx::type() {
return MNN::OpParameter_NONE;
}
void MyMatMulOnnx::run(MNN::OpT* dstOp, const onnx::NodeProto* onnxNode,
std::vector<const onnx::TensorProto*> initializers) {
return ;
}
REGISTER_CONVERTER(MyMatMulOnnx, MatMul);
#include <string.h>
#include "onnxOpConverter.hpp"
DECLARE_OP_CONVERTER(TanhOnnx);
MNN::OpType TanhOnnx::opType() {
return MNN::OpType_TanH;
}
MNN::OpParameter TanhOnnx::type() {
return MNN::OpParameter_NONE;
}
void TanhOnnx::run(MNN::OpT *dstOp, const onnx::NodeProto *onnxNode,
std::vector<const onnx::TensorProto *> initializers) {
auto param = new MNN::TanHParamT;
auto type = onnxNode->op_type();
if(type=="Tanh")
{
param->operation=MNN::TanHType_Tanh;
}
else if(type=="TanH")
{
param->operation=MNN::TanHType_TanH;
}
dstOp->main.value = param;
return ;
}
REGISTER_CONVERTER(TanhOnnx, TanH);
REGISTER_CONVERTER(TanhOnnx, Tanh);
- 在
/tools/converter/source/onnx
下修改ReduceOnnx.cpp
和onnxConverter.cpp
ReduceOnnx.cpp
: 添加ReduceL2
和ReduceMax
的选项
auto type = onnxNode->op_type();
/*2019-11-24 曹冲 添加ReduceL2 和 ReduceMax的选项*/
if (type == "ReduceMean") {
param->operation = MNN::ReductionType_MEAN;
}
else if(type == "ReduceMax")
{
param->operation = MNN::ReductionType_MAXIMUM;
}
else if(type == "ReduceL2"){
param->operation = MNN::ReductionType_NORML2;
}
else
{
DLOG(ERROR) << "TODO ==> " << type;
}
param->dType = MNN::DataType_DT_FLOAT;
param->dim = axes;
param->keepDims = keepdims;
dstOp->main.value = param;
}
/*2019-11-24 曹冲 注册ReduceL2 和 ReduceMax*/
REGISTER_CONVERTER(ReduceOnnx, ReduceMean);
REGISTER_CONVERTER(ReduceOnnx, ReduceMax);
REGISTER_CONVERTER(ReduceOnnx, ReduceL2);
onnxConverter.cpp
: 修改72行 修改输入格式 NCHW --> NC4HW4 or NHWC(测试无论是NC4HW4还是NHWC都是可以得到正确结果且不报错,而NCHW则会报错)
//修改 输入格式 NCHW --> NC4HW4 or NHWC
inputParam->dformat = MNN::MNN_DATA_FORMAT_NHWC;
3. 添加维度计算
- 在
/source/shape
下更改ShapeReduction.cpp
:REGISTER_SHAPE_INPUTS(ReductionComputer, OpType_Reduction, {1}) --> REGISTER_SHAPE(ReductionComputer, OpType_Reduction) (虽然改动了但并未测试原始的是否可用) - 在
/source/shape
下更改ShapeMatMul.cpp
: 添加一个if判断,判断参数指针是否为空,为空则做我添加的shape判断,不为空则做原始的shape判断。
class MatMulSizeComputer : public SizeComputer {
virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
const std::vector<Tensor*>& outputs) const override {
MNN_ASSERT(2 == inputs.size());
MNN_ASSERT(1 == outputs.size());
MNN_ASSERT(2 == inputs[0]->buffer().dimensions);
MNN_ASSERT(2 == inputs[1]->buffer().dimensions);
if(op->main_as_MatMul()==nullptr)
{
auto output = outputs[0];
TensorUtils::copyShape(inputs[0], output, true);
auto w0 = inputs[0]->length(1);
auto h0 = inputs[0]->length(0);
auto w1 = inputs[1]->length(1);
auto h1 = inputs[1]->length(0);
if (w0 != h1) {
return false;
}
output->buffer().type = inputs[0]->buffer().type;
output->setLength(0, h0);
output->setLength(1, w1);
TensorUtils::getDescribe(output)->dimensionFormat = TensorUtils::getDescribe(inputs[0])->dimensionFormat;
return true;
}
else
{
auto matMul = op->main_as_MatMul();
auto output = outputs[0];
TensorUtils::copyShape(inputs[0], output, true);
auto w0 = inputs[0]->length(1);
auto h0 = inputs[0]->length(0);
if (matMul->transposeA()) {
auto t = w0;
w0 = h0;
h0 = t;
}
auto w1 = inputs[1]->length(1);
auto h1 = inputs[1]->length(0);
if (matMul->transposeB()) {
auto t = w1;
w1 = h1;
h1 = t;
}
if (w0 != h1) {
return false;
}
output->buffer().type = inputs[0]->buffer().type;
output->setLength(0, h0);
output->setLength(1, w1);
TensorUtils::getDescribe(output)->dimensionFormat = TensorUtils::getDescribe(inputs[0])->dimensionFormat;
return true;
}
}
};
4. 添加实现
-
添加算子类型
- 在
source/backend/CPU
目录下更改CPUMatMul.cpp
,添加if判断
if(op->main_as_MatMul()==nullptr)
{
return new CPUMatMul(backend, false, false);
}
else
{
auto param = op->main_as_MatMul();
return new CPUMatMul(backend, param->transposeA(), param->transposeB());
}
- 在
source/backend/CPU
目录下更改CPUReduction.cpp
,添加ReductionType_NORML2
switch (op->main_as_ReductionParam()->operation()) {
case ReductionType_MEAN:
return new MeanReduce(backend, op);
case ReductionType_SUM:
return new SumReduce(backend, op);
case ReductionType_MINIMUM:
return new MinReduce(backend, op);
case ReductionType_MAXIMUM:
return new MaxReduce(backend, op);
case ReductionType_PROD:
return new ProdReduce(backend, op);
case ReductionType_ANY:
return new AnyReduce(backend, op);
case ReductionType_ALL:
return new AllReduce(backend, op);
case ReductionType_NORML2:
return new ReduceL2(backend, op);
default:
MNN_ASSERT(false);
break;
}
class ReduceL2 : public Reduction {
public:
ReduceL2(Backend* backend, const Op* op) : Reduction(backend, op) {
// nothing to do
}
virtual ~ReduceL2() = default;
protected:
virtual void onReduce(const float* src, float* dst, int inside, int outside, int axisSize) const override {
for (int oi = 0; oi < outside; ++oi) {
auto srcOutSide = src + oi * axisSize * inside;
auto dstOutSide = dst + oi * inside;
for (int ii = 0; ii < inside; ++ii) {
auto srcInside = srcOutSide + ii;
auto dstInside = dstOutSide + ii;
float summer = 0.0f;
for (int a = 0; a < axisSize; ++a) {
summer += srcInside[a * inside]*srcInside[a * inside];
}
*dstInside = sqrt(summer);
}
}
}
virtual void onReduce(const int32_t* src, int32_t* dst, int inside, int outside, int axisSize) const override {
for (int oi = 0; oi < outside; ++oi) {
auto srcOutSide = src + oi * axisSize * inside;
auto dstOutSide = dst + oi * inside;
for (int ii = 0; ii < inside; ++ii) {
auto srcInside = srcOutSide + ii;
auto dstInside = dstOutSide + ii;
int32_t summer = 0;
for (int a = 0; a < axisSize; ++a) {
summer += srcInside[a * inside]*srcInside[a * inside];
}
*dstInside = sqrt(summer);
}
}
}
};
- 在
source/backend/CPU
目录下更改CPUTanh.cpp
和CPUTanh.hpp
,新建模板类,原始MNN Tanh的实现和自定义Tanh都继承模板类。
class CPUTanh : public Tanh_temp{
public:
CPUTanh(Backend* backend) : Tanh_temp(backend){
}
virtual ~CPUTanh() = default;
ErrorCode onResize(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) override {
return NO_ERROR;
}
ErrorCode onExecute(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) override {
MNN_ASSERT(1 == inputs.size());
MNN_ASSERT(1 == outputs.size());
auto inputData = inputs[0]->host<float>();
auto outputData = outputs[0]->host<float>();
const int dataSize = outputs[0]->elementSize();
Tanh_func(outputData, inputData, dataSize);
return NO_ERROR;
}
protected:
virtual void Tanh_func(float* dst, const float* src, size_t dataSize)const override
{
for (int i = 0; i < dataSize; i++) {
dst[i] = (expf(src[i])-expf(-1*src[i]))/(expf(src[i])+expf(-1*src[i]));
}
}
};
标签:inputs,return,onnx,算子,MNN,auto,const,op 来源: https://www.cnblogs.com/cc1784380709/p/14396253.html