其他分享
首页 > 其他分享> > 男神zyh的青睐

男神zyh的青睐

作者:互联网

G 男神zyh的青睐

这道题与普通的莫队不一样的地方是,普通的莫队是求一个\([l,r]\)区间里面的贡献,但是这道题需要求两个区间贡献之间的积。

普通的莫队是二维的,对左端点进行分块,然后再在块内对右端点进行排序,复杂度为\(O(n^{\frac{3}{2}})\)。

但是本题的莫队是三维的,对左端点进行分块,然后再在块内对右端点进行分块,然后再在块内对时间 t 进行排序,可以证明当块的大小取\(n^\frac{2}{3}\)的时候,算法的总复杂度为\(O(n^\frac{5}{3})\)

可以利用容斥原理,将原本是四维的莫队,降为三维,把\((r_1-l_1)\times(r_2-l_2)\)变为\((r_2-l_2)\times[1,r]-(r_2-l_2)\times[1,l_1-1]\)

不过我也尝试了一下四维莫队的解法,复杂度为\(O(n^{\frac{7}{4}})\),大概是1e8,在经过亿点点优化之后,居然卡过去了。

三维写法:

// Created by CAD
#include <bits/stdc++.h>
#define ll long long

using namespace std;

const int maxn=5e4+5;
const int mod=1e9+7;
int belo[maxn];
struct query{
    int l,r,id,t;
    bool operator<(const query &q)const {
        return belo[l]!=belo[q.l]?(belo[l]<belo[q.l]):(belo[r]!=belo[q.r]?(belo[r]<belo[q.r]):(t<q.t));
    }
}q[maxn<<1];
int a[maxn],cnt1[maxn],cnt2[maxn],ans[maxn];
ll now;
ll d[maxn];
inline void add(int x){
    now+=cnt1[a[x]];
    now%=mod;
    cnt2[a[x]]++;
}
inline void del(int x){
    now-=cnt1[a[x]];
    now%=mod;
    cnt2[a[x]]--;
}
inline void ad(int x){
    now+=cnt2[a[x]];
    now%=mod;
    cnt1[a[x]]++;
}
inline void de(int x){
    now-=cnt2[a[x]];
    now%=mod;
    cnt1[a[x]]--;
}

ll qpow(ll x,ll n){
    ll ans=1;
    while(n>0){
        if(n&1) ans=ans*x%mod;
        x=x*x%mod,n>>=1;
    }
    return ans;
}

int main() {
    ios::sync_with_stdio(false);
    cin.tie(0);
    int n,m;cin>>n>>m;
    int blo=pow(n,2/3.0);
    for(int i=1;i<=n;++i){
        cin>>a[i];
        belo[i]=(i-1)/blo+1;
    }
    for(int i=1;i<=m;++i){
        int l1,r1,l2,r2;cin>>l1>>r1>>l2>>r2;
        q[i*2-1]={l2,r2,-i,l1-1};
        q[i*2]={l2,r2,i,r1};
        d[i]=1ll*(r2-l2+1)*(r1-l1+1)%mod;
    }
    sort(q+1,q+2*m+1);
    int l=1,r=0,t=0;
    for(int i=1;i<=2*m;++i){
        int ql=q[i].l,qr=q[i].r,qt=q[i].t;
        while(l<ql) del(l++);
        while(l>ql) add(--l);
        while(r<qr) add(++r);
        while(r>qr) del(r--);

        while(t<qt) ad(++t);
        while(t>qt) de(t--);

        ans[abs(q[i].id)]+=q[i].id/abs(q[i].id)*now;
        ans[abs(q[i].id)]%=mod;
    }
    for(int i=1;i<=m;++i){
        cout<<1ll*(ans[i]+mod)%mod*qpow(d[i],mod-2)%mod<<endl;
    }
    return 0;
}

四维写法:

// Created by CAD
#include <bits/stdc++.h>

#define ll long long
using namespace std;

const int maxn=5e4+5;
const int mod=1e9+7;
int belo[maxn];
struct query{
    int p[4],id;
    bool operator<(const query &q)const {
        for(int i=0;i<3;++i)
            if(belo[p[i]]!=belo[q.p[i]]){
                if(!i||belo[p[i-1]]&1)
                    return belo[p[i]]<belo[q.p[i]];
                else
                    return belo[p[i]]>belo[q.p[i]];
            }

        if(belo[p[2]]&1)
            return p[3]<q.p[3];
        else return p[3]>q.p[3];
    }
}q[maxn<<1];
int a[maxn],cnt[2][maxn],ans[maxn];
ll now;
ll d[maxn];
inline void add(int &x,int &i){
    now+=cnt[i^1][x];
    now%=mod;
    ++cnt[i][x];
}
inline void del(int &x,int &i){
    now-=cnt[i^1][x];
    now%=mod;
    --cnt[i][x];
}

inline ll qpow(ll x,ll n){
    ll ans=1;
    while(n>0){
        if(n&1) ans=ans*x%mod;
        x=x*x%mod,n>>=1;
    }
    return ans;
}

int main() {
    int n,m;scanf("%d%d",&n,&m);
    int blo=pow(n,0.74);
    for(int i=1;i<=n;++i){
        scanf("%d",a+i);
        belo[i]=(i-1)/blo+1;
    }
    for(int i=1;i<=m;++i){
        int l1,r1,l2,r2;scanf("%d%d%d%d",&l1,&r1,&l2,&r2);
        q[i]={l1,r1,l2,r2,i};
        d[i]=1ll*(r2-l2+1)*(r1-l1+1)%mod;
    }
    sort(q+1,q+m+1);
    int p[4]={1,0,0,0};
    for(int i=1;i<=m;++i){
        for(int j=0;j<2;++j){
            int &l=p[j*2],&r=p[j*2+1];
            int &ql=q[i].p[j*2],&qr=q[i].p[j*2+1];
            while(l<ql) del(a[l++],j);
            while(l>ql) add(a[--l],j);
            while(r<qr) add(a[++r],j);
            while(r>qr) del(a[r--],j);
        }
        ans[q[i].id]=now;
    }
    for(int i=1;i<=m;++i)
        printf("%lld\n",1ll*(ans[i]+mod)%mod*qpow(d[i],mod-2)%mod);
    return 0;
}

标签:青睐,int,zyh,--,ans,男神,莫队,id,mod
来源: https://www.cnblogs.com/CADCADCAD/p/14710663.html