多分类Focal Loss
作者:互联网
class FocalLoss(nn.Module):
def __init__(self, gamma = 2, alpha = 1, size_average = True):
super(FocalLoss, self).__init__()
self.gamma = gamma
self.alpha = alpha
self.size_average = size_average
self.elipson = 0.000001
def forward(self, logits, labels):
"""
cal culates loss
logits: batch_size * labels_length * seq_length
labels: batch_size * seq_length
"""
if labels.dim() > 2:
labels = labels.contiguous().view(labels.size(0), labels.size(1), -1)
labels = labels.transpose(1, 2)
labels = labels.contiguous().view(-1, labels.size(2)).squeeze()
if logits.dim() > 3:
logits = logits.contiguous().view(logits.size(0), logits.size(1), logits.size(2), -1)
logits = logits.transpose(2, 3)
logits = logits.contiguous().view(-1, logits.size(1), logits.size(3)).squeeze()
assert(logits.size(0) == labels.size(0))
assert(logits.size(2) == labels.size(1))
batch_size = logits.size(0)
labels_length = logits.size(1)
seq_length = logits.size(2)
# transpose labels into labels onehot
new_label = labels.unsqueeze(1)
label_onehot = torch.zeros([batch_size, labels_length, seq_length]).scatter_(1, new_label, 1)
# calculate log
log_p = F.log_softmax(logits)
pt = label_onehot * log_p
sub_pt = 1 - pt
fl = -self.alpha * (sub_pt)**self.gamma * log_p
if self.size_average:
return fl.mean()
else:
return fl.sum()
承接Matlab、Python和C++的编程,机器学习、计算机视觉的理论实现及辅导,本科和硕士的均可,咸鱼交易,专业回答请走知乎,详谈请联系QQ号757160542,非诚勿扰。
标签:Loss,分类,log,self,labels,length,logits,Focal,size 来源: https://blog.csdn.net/weixin_36670529/article/details/115598228