LeNet GPU对比CPU
作者:互联网
目录
记录下LeNet在GPU和CPU下的一次测试。
一、概述
LeNet是卷积神经网络的祖师爷LeCun在1998年提出,用于解决手写数字识别的视觉任务。
二、代码
import torch
import torch.nn as nn
import torch.utils.data as Data
import torchvision
import time
USE_GPU = True
EPOCH = 10
BATCH_SIZE = 50
LR = 0.01
DOWNLOAD_MNIST = True
train_data = torchvision.datasets.MNIST(root='./mnist/', train=True, transform=torchvision.transforms.ToTensor(),
download=DOWNLOAD_MNIST, )
train_loader = Data.DataLoader(dataset=train_data, batch_size=BATCH_SIZE, shuffle=True)
test_data = torchvision.datasets.MNIST(root='./mnist/', train=False)
if USE_GPU:
test_x = torch.unsqueeze(test_data.test_data, dim=1).type(torch.FloatTensor)[:2000].cuda()/255.
test_y = test_data.test_labels[:2000].cuda()
else:
test_x = torch.unsqueeze(test_data.test_data, dim=1).type(torch.FloatTensor)[:2000] / 255.
test_y = test_data.test_labels[:2000]
# 搭建网络
class _LeNet(nn.Module):
def __init__(self):
super(_LeNet, self).__init__() # 输入是28*28*1
self.conv1 = nn.Sequential(
nn.Conv2d(in_channels=1, out_channels=16, kernel_size=5, stride=1, padding=2), # 28*28*16
nn.MaxPool2d(kernel_size=2), # 14*14*16
)
self.conv2 = nn.Sequential(
nn.Conv2d(in_channels=16, out_channels=32, kernel_size=5, stride=1, padding=2), # 14*14*32
nn.MaxPool2d(kernel_size=2), # 7*7*32
)
self.linear1 = nn.Linear(7 * 7 * 32, 120)
self.linear2 = nn.Linear(120, 84)
self.out = nn.Linear(84, 10)
def forward(self, x):
x = self.conv1(x)
x = self.conv2(x)
x = x.view(x.size(0), -1)
x = self.linear1(x)
x = self.linear2(x)
output = self.out(x)
return output
cnn = _LeNet()
if USE_GPU:
cnn.cuda()
print(cnn)
optimizer = torch.optim.Adam(cnn.parameters(), lr=LR)
loss_func = nn.CrossEntropyLoss()
time_start=time.time()
for epoch in range(EPOCH):
for step, (x, y) in enumerate(train_loader):
if USE_GPU:
c_x=x.cuda()
c_y=y.cuda()
else:
c_x = x
c_y = y
output = cnn(c_x)
loss = loss_func(output, c_y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
#########训练到此结束##########
if step % 50 == 0:
test_out = cnn(test_x)
if USE_GPU:
pred_y = torch.max(test_out, 1)[1].cuda().data
else:
pred_y = torch.max(test_out, 1)[1].data
accuracy = torch.sum(pred_y == test_y).type(torch.FloatTensor) / test_y.size(0)
if USE_GPU:
print('Epoch: ', epoch, '| train loss: %.4f' % loss.data.cpu().numpy(), '| test accuracy: %.2f' % accuracy)
else:
print('Epoch: ', epoch, '| train loss: %.4f' % loss.data.numpy(), '| test accuracy: %.2f' % accuracy)
time_end=time.time()
test_output = cnn(test_x[:10])
if USE_GPU:
pred_y = torch.max(test_output, 1)[1].cuda().data
else:
pred_y = torch.max(test_output, 1)[1].data
print(pred_y, 'prediction numbe')
print(test_y[:10], 'real number')
print('time cost',time_end-time_start,'s')
三、测试结果
CPU:798s
GPU:116s
标签:nn,self,torch,LeNet,test,GPU,data,CPU 来源: https://blog.csdn.net/hello2mao/article/details/115545537