政策评估的经典计量方法, 以及政策干预评估方法的新进展
作者:互联网
凡是搞计量经济的,都关注这个号了
稿件:econometrics666@126.com
所有计量经济圈方法论丛的code程序, 宏微观数据库和各种软件都放在社群里.欢迎到计量经济圈社群交流访问.
在社会科学中,政策评估方法被广泛用来评估政策干预效应。在这篇文章中,两位计量大咖介绍了政策评估计量经济学方法的主要框架。此外,他们也对这些方法做了一些拓展,同时介绍了政策评估方法取得的新进展。
下面只做一些基础性的引荐,若想了解具体内容,建议参看文后附上的原文标题。同时,若对这些政策评估和因果推断方法感兴趣,也可以到计量社群交流访问和讨论。
政策评估的基础性介绍
1.政策效应评估的四种方法(Policy evaluation),2.政策效应评估的基本问题,3.微观计量经济学:政策效应评估,4.在双重差分模型中使用倾向得分估计政策变化效应操作及注意事项! 附100篇相关文章! 5.诺奖得主一张表, 解开各种政策评估计量方法描述, 适用条件和所需数据等谜底!6.聚束分析法(Bunching)最权威综述, 财税政策评估的主流方法!7.计量经济学会主席: 非实验数据的社会政策评估方法综述,8.海外第一个拿到终身教职回到国内当经济学院院长的教授卸任了!用于政策评估的计量经济学: 问题, 前沿与展望,9.DID的研究动态和政策评估中应用的文献综述,10.用观测数据进行政策效应评估的基本问题和分析框架,11.置换检验政策的随机性, 政策评估越来越风行的利斧,12.必读|遗漏变量偏误对于因果推断的影响, 及在各种政策评估方法中可能的解决方法,13.比DID更加灵活的DDID政策效应评估方法
因果推断和政策评估基础性介绍
1.基于“因果推断”的新兴研究范式, 是真实因果?,2.五种计量因果识别方法秘籍,从此走遍天涯都不怕,3.反事实因果推断方法是过去50年中最重要的统计思想么? 且听我娓娓道来!4.搞懂因果推断中内生性问题解决方法必读的书籍和文献已搜集好!5.Guido Imbens: 潜在结果和有向无环图在因果推断实证研究中的应用实例讲解(二),6.ECM主编: 潜在结果和有向无环图在因果推断实证研究中的应用权威讲解,7.一位“诗人”教授写了本因果推断书籍, 现在可以直接下载PDF参看!8.你应该阅读哪本因果推断书籍: 一份进阶流程图和简短书评列表,9.前沿: 卫星数据在实证研究中的应用, 用其开展因果推断的好处!10.7大因果推断大法精选实证论文, 可用于中国本土博士课堂教学!11.应用计量经济学现状: 因果推断与政策评估最全综述,12.哈佛大学新修订完成的因果推断经典大作免费下载!附数据和code!13.疫情期计量课程免费开放!面板数据, 因果推断, 时间序列分析与Stata应用,14.Python做因果推断的方法示例, 解读与code,15.孟德尔随机化法在因果推断中的应用, 如火如荼新方法,16.图灵奖得主Pearl的因果推断新科学, Why? 17.基于“因果推断”的新兴研究范式, 是真实因果?18.图说: 各种因果推断方法适用数据, 条件和潜在缺陷,19.用"因果关系图"来进行因果推断的新技能,20.因果推断的统计方法总结, 177份文献,21.机器学习在微观计量的应用最新趋势: 大数据和因果推断,22.工具变量与因果推断, 明尼苏达Bellemare关于IV的分析,23.因果推断中的匹配方法:最全回顾和前景展望,24.因果推断中的匹配方法:最全回顾和前景展望,25.我是安神, 我为因果推断计量代言,26.因果推断的实证革命,搞前沿计量都需要阅读的大作,27.J.Angrist就因果推断长篇评论+音频版,30.J.Angrist就因果推断长篇评论+音频版(2),31.Angrist因果推断课程,经典期刊读物汇集
随机实验作为基础
1.RCTs随机控制试验到底是什么, 会是社科研究的必然趋势
观测样本基础上的因果推断
关于匹配方法相关文章1. PSM倾向匹配Stata操作详细步骤和代码,干货十足,2.处理效应模型选择标准,NNM和PSM,赠书活动,3.PSM和马氏匹配已淘汰, '遗传匹配'成因果推断匹配之王,4.PSM, RDD, Heckman, Panel模型的操作程序, selective文章精华系列,5.广义PSM,连续政策变量因果识别的不二利器,6.PSM-DID, DID, RDD, Stata程序百科全书式的宝典,7.在教育领域使用IV, RDD, DID, PSM多吗? 使用具体References,8.分位数DID, PSMDID, 政策前协变量平衡性检验操作步骤和案例,9.逐年匹配的PSM-DID操作策略, 多时点panel政策评估利器,10.执行PSM的标准操作步骤, 不要再被误导了,11.PSM匹配后如何保留配对样本? 1:1, 1:4或更多情况呢?12.逐年PSM匹配后再DID识别因果的实证范文, 这就是逐年PSM-DID的操作范式!13.英诺丁汉大学校长为你讲解逐年PSM匹配-DID方法的操作, 并配上自己写的一篇范文!14.内生性问题和倾向得分匹配, 献给准自然试验的厚礼,15.粗化精确匹配CEM文献推荐, 程序步骤可复制,16.DID, 合成控制, 匹配, RDD四种方法比较, 适用范围和特征,17.匹配方法(matching)操作指南, 值得收藏的16篇文章,18.中国工业企业数据库匹配160大步骤的完整程序和相应数据,19.Match匹配估计做敏感性检验的最新方法, 让不可观测变量基础上的选择无处遁形,20.无需检查协变量平衡性的CEM匹配, 到底有多神气和与众不同,21.因果推断中的匹配方法:最全回顾和前景展望,22.内生性问题和倾向得分匹配, 献给准自然试验的厚礼,23.倾向值匹配与因果推论,史上最全面精妙的锦囊,24.匹配还是不匹配?这真是个值得考虑的问题,25.匹配比OLS究竟好在哪里?这是一个问题,26.倾向匹配分析深度(Propsensity matching analysis),27.倾向得分匹配PSM, 你真的用对了吗? 对主流期刊86篇文章分析与总结!28.中文刊上用倾向得分匹配PSM和内生转换模型ESM的实证文章有哪些?不看至少需要收藏一下,29.倾向得分匹配PSM, 你真的用对了吗? 对主流期刊86篇文章分析与总结,30.内生转换模型vs内生处理模型vs样本选择模型vs工具变量2SLS,31.ESP内生转化概率模型是什么, 如何做, 如何解释, 为什么需要它? 32.Heckman模型out了,内生转换模型掌控大局,33.因果效应中的双重稳健估计值, 让你的估计精准少误,34.加权DID, IPW-DID实证程序百科全书式的宝典
DID和合成控制
合成控制是DID的延伸而已,通过权重合成一个控制组
关于DID相关文章0.双重差分DID方法免费课程, 文章, 数据和代码全在这里, 优秀学人必须收藏学习!1.DID运用经典文献,强制性许可:来自对敌贸易法的证据,2.连续DID经典文献, 土豆成就了旧世界的文明,3.截面数据DID讲述, 截面做双重差分政策评估的范式,4.RDD经典文献, RDD模型有效性稳健性检验,5.事件研究法用于DID的经典文献"环境规制"论文数据和程序,6.广义DID方法运用得非常经典的JHE文献,7.DID的经典文献"强制许可"论文数据和do程序,8.传销活动对经济发展影响, AER上截面数据分析经典文,9.多期DID的经典文献big bad banks数据和do文件,10.因果推断IV方法经典文献,究竟是制度还是人力资本促进了经济的发展?11.AER上因果关系确立, 敏感性检验, 异质性分析和跨数据使用经典文章,12.第二篇因果推断经典,工作中断对工人随后生产效率的影响?,13.密度经济学:来自柏林墙的自然实验, 最佳Econometrica论文,14.AER上以DID, DDD为识别策略的劳动和健康经济学,15.一个使用截面数据的政策评估方法, 也可以发AER,16.多期DID模型的经典文献,big bad banks讲解",17.多期DID的经典文献big bad banks数据和do文件,18.非线性DID, 双重变换模型CIC, 分位数DID,19.模糊(Fuzzy)DID是什么?如何用数据实现呢?20.多期DID的big bad banks中文翻译版本及各细节讲解,21.DID中行业/区域与时间趋势的交互项, 共同趋势检验, 动态政策效应检验等,22.截面数据DID操作程序指南, 一步一步教你做,23.DID的研究动态和政策评估中应用的文献综述,24.连续DID经典文献, 土豆成就了旧世界的文明,25.DID双重差分方法, 一些容易出错的地方,26.连续DID, DDD和比例DID, 不可观测选择偏差,27.加权DID, IPW-DID实证程序百科全书式的宝典,28.DID和DDD, 一个简明介绍, 双重和三重差分模型,29.DID过程中总结的地图展示技巧,30.DID的平行趋势假定检验程序和coefplot的其他用法,31.截面DID, 各种固定效应, 安慰剂检验, 置换检验, 其他外部冲击的处理,32.实践中双重差分法DID暗含的假设,33.过去三十年, RCT, DID, RDD, LE, ML, DSGE等方法的“高光时刻”路线图,34.计量院士首次用DID方法分析, 中国封城对新冠病毒扩散的影响!,35.截面DID, 各种固定效应, 安慰剂检验, 置换检验, 其他外部冲击的处理,36.诺奖夫妇的中国学生, “DID小公主”的成名之作, 茶叶价格与中国失踪女性之谜!,37.前沿: 反向DID, 反向双重差分法DDR全解析, 辅以实证示例!38.英诺丁汉大学校长为你讲解逐年PSM匹配-DID方法的操作, 并配上自己写的一篇范文!39.逐年PSM匹配后再DID识别因果的实证范文, 这就是逐年PSM-DID的操作范式!40.用事件研究法进行因果识别如何做? 有什么好处? 与DID结合起来潜力无穷!41.Abadie半参数双重差分DID估计量, 使你的平行趋势假设更加可信!42.弹性DID, DID的终极大法, 关于DID各方法总结太赞了!43.二重差分法分析(DID),44.比DID更加灵活的DDID政策效应评估方,45.DID思路和操作,一篇相关实证文献,46.二重差分法深度分析(DID),三重差分兼论,47.面板数据的DID估计,透彻解读,48.PSM-DID, DID, RDD, Stata程序百科全书式的宝典,49.关于DID的所有解读, 资料, 程序, 数据, 文献和各种变形都在这里,50.分位数DID, PSMDID, 政策前协变量平衡性检验操作步骤和案例,51.PSM-DID, DID实证完整程序百科全书式的宝典,52.逐年匹配的PSM-DID操作策略, 多时点panel政策评估利器,53.广义DID, DID最大法宝, 无所不能的政策评估工具,54.渐进DID专治各种渐进性政策的良药, 可试一试疗效,55.双重差分DID的种类细分, 不得不看的20篇文章,56.找不到IV, RD和DID该怎么办? 这有一种备选方法,57.在教育领域使用IV, RDD, DID, PSM多吗? 使用具体References,58.DID和IV操纵空间大吗? 一切皆为P-hacking,59.第一篇中文DID实证论文长啥样? 60.世界上第一篇DID实证论文长啥样?,61.关于双重差分法DID的32篇精选Articles专辑!62.空间双重差分法(spatial DID)最新实证papers合辑!63.空间DID双重差分方法的文献, spatial DID,64.多期三重差分法和双重差分法的操作指南,65.多期双重差分法,政策实施时间不同的处理方法,66.三重差分法运行和示例,67.如何设计双重差分法DID: 各种政策研究的最佳指南!
关于合成控制法,1.匹配, 双重差分, 合成控制, 断点回归方法的比较, 思想原理, 适用范围和主要特征,2.断点回归RD和合成控制法SCM免费课程, 文章, 数据和代码全在这里, 有必要认真研究学习!3.中文刊上用断点回归RDD和合成控制法SCM的实证文章有哪些?不看至少需要收藏一下!4.合成控制法创始人如何用SCM做实证呢?这些规定动作一个都不能少!5.最新: 运用机器学习和合成控制法研究武汉封城对空气污染和健康的影响!6.关于合成控制法SCM的33篇精选Articles专辑!小组惊动了阿里巴巴!7.合成控制法与HCW方法, 谁能够走得更远?8.广义合成控制法gsynth, Stata运行程序release,9.广义合成控制法gsynth, 基于交互固定效应的因果推断,10.再谈合成控制法SCM, 帮你寻找因果推断控制组,11.合成控制法什么鬼? 因果推断的前沿方法指南
工具变量寻求LATE
图片
关于工具变量,参看1.内生性问题操作指南, 广为流传的22篇文章,2.看完顶级期刊文章后, 整理了内生性处理小册子,3.如何寻找工具变量?得工具者得实证计量,4.内生性处理的秘密武器-工具变量估,5.工具变量在社会科学因果推断中的应用,6.为你的"工具变量"合理性进行辩护, 此文献可以作为范例,7.没有工具变量、断点和随机冲击,也可以推断归因,8.工具变量与因果推断, 明尼苏达Bellemare关于IV的分析,9.工具变量IV与内生性处理的精细解读,10.我的"工具变量"走丢了,寻找工具变量思路手册,11.面板数据里处理多重高维固定效应的神器, 还可用工具变量处理内生性,12.豪斯曼, 拉姆齐检验,过度拟合,弱工具和过度识别,模型选择和重抽样问题,13.工具变量先锋 Sargan,供参考,14.AEA期刊的IV靠不靠谱?15.计量大焖锅: iv, clorenz, rank, scalar, bys, xtile, newey, nlcom,16.GMM是IV、2SLS、GLS、ML的统领,待我慢慢道来,17.IV和GMM相关估计步骤,内生性、异方差性等检验方法,18.因果推断IV方法经典文献,究竟是制度还是人力资本促进了经济的发展?19.内生变量的交互项如何寻工具变量, 交互项共线咋办,20.面板数据、工具变量选择和HAUSMAN检验的若干问题,21.IV和Matching老矣, “弹性联合似然法”成新趋势,22.IV回归系数比OLS大很多咋回事, 怎么办呢? ,23.不用IV, 基于异方差识别方法解决内生性, 赐一篇文献,24.找不到IV, RD和DID该怎么办? 这有一种备选方法,25.内生转换模型vs内生处理模型vs样本选择模型vs工具变量2SLS,26.内生性, 工具变量与 GMM估计, 程序code附,27.GMM和工具变量在面板数据中的运用,28.关于工具变量的材料包, 标题,模型,内生变量,工具变量,29.必须使用所有外生变量作为工具变量吗?30.工具变量精辟解释, 保证你一辈子都忘不了,31.毛咕噜论文中一些有趣的工具变量!33.前沿: 删失数据分位数工具变量(CQIV)估计, 做删失数据异质性效应分析,34.不需要找工具变量, 新方式构建工具变量, 导师再也不用担心内生性问题了!35.关于顶级外刊工具变量的使用最全策略, 不收藏反复读就不要谈IV估计!36.如何通过因果图选择合适的工具变量?一份关于IV的简短百科全书,37.前沿: nature刊掀起DAG热, 不掌握就遭淘汰无疑!因果关系研究的图形工具! 38.最清晰的内生性问题详解及软件操作方案!实证研究必备工具!39.中国女学者与其日本同行在JPE上发文了!利用独特数据, 地理断点RDD和IV研究中国环境议题!40.双胞胎样本解决遗漏变量和测量误差, LIV解决选择偏差,41.内生性处理的秘密武器-工具变量估计,42.工具变量IV必读文章20篇, 因果识别就靠他了,43.看完顶级期刊文章后, 整理了内生性处理小册子,44.“内生性” 到底是什么鬼? New Yorker告诉你,45.Heckman两步法的内生性问题(IV-Heckman),46.最全估计方法,解决遗漏变量偏差,内生性,混淆变量和相关问题,47.非线性面板模型中内生性解决方案,48.内生性处理方法与进展,49.内生性问题和倾向得分匹配,50.你的内生性解决方式out, ERM独领风骚,51.面板数据是怎样处理内生性的,52.计量分析中的内生性问题综述,53.一份改变实证研究的内生性处理思维导图,54.Top期刊里不同来源内生性处理方法,55.面板数据中heckman方法和程序(xtheckman),56.控制函数法CF, 处理内生性的广义方法,57.二值选择模型内生性检验方法,58.2SRI还是2SPS, 内生性问题的二阶段CF法实现,59.非线性模型及离散内生变量处理利器, 应用计量经济学中的控制函数法!60.最全利用工具变量控制内生性的步骤和代码—在经管研究中的应用,61.如何选择合适的工具变量, 基于既有文献的总结和解释!62.中介效应最新进展: 中介效应中的工具变量法使用方法及其代码!63.弱工具变量的稳健性检验, 附上code和相关说明!64.工具变量对因果效应的识别和外推, 大牛的顶级评述!
IV里面的边际处理效应
因果推断异质性什么鬼? 边际处理效应让你与众不同
图片
断点回归RDD
图片
断点回归设计RDD的文章1.断点回归设计RDD分类与操作案例,2.RDD断点回归, Stata程序百科全书式的宝典,3.断点回归设计的前沿研究现状, RDD,4.断点回归设计什么鬼?且听哈佛客解析,5.断点回归和读者的提问解答,6.断点回归设计RDD全面讲解, 教育领域用者众多,7.没有工具变量、断点和随机冲击,也可以推断归因,8.找不到IV, RD和DID该怎么办? 这有一种备选方法,9.2卷RDD断点回归使用手册, 含Stata和R软件操作流程,10.DID, 合成控制, 匹配, RDD四种方法比较, 适用范围和特征,11.安神+克拉克奖得主的RDD论文, 断点回归设计,12.伊斯兰政府到底对妇女友不友好?RDD经典文献,13.PSM,RDD,Heckman,Panel模型的操作程序,14.RDD经典文献, RDD模型有效性稳健性检验,15.2019年发表在JDE上的有趣文章, 计量方法最新趋势,16.关于(模糊)断点回归设计的100篇精选Articles专辑!17.断点回归设计RDD精辟解释, 保证你一辈子都忘不了,18.“RDD女王”获2020年小诺奖!她的RD数据, 程序, GIS和博士论文可下载!关于她学术研究过程的最全采访!19.中国博导要求掌握的RDD方法实证运用范文(配程序code), 不然就不要用RDD做实证研究!20.最近70篇关于中国环境生态的经济学papers合辑!21.事件研究法用于DID的经典文献"环境规制"论文数据和程序,22.环境, 能源和资源经济学手册推荐, 经典著作需要反复咀嚼,23.中文刊上用断点回归RDD和合成控制法SCM的实证文章有哪些?不看至少需要收藏一下!24.上双一流大学能多赚多少钱? 学习断点回归RDD, 机制分析的经典文章!25.JPE上利用地理断点RDD和IV研究中国环境议题的do文件release!
政策评估未来发展方向
图片
关于政策评估问题,下面的文献没有任何一篇是多余的,相反,它们都是大浪淘沙中露出水面的金沙砾。
图片
图片
图片
图片
图片
图片
图片
文献来源:
图片
下面这些短链接文章属于合集,可以收藏起来阅读,不然以后都找不到了。
标签:变量,DID,推断,RDD,评估,新进展,方法,因果 来源: https://blog.51cto.com/15057855/2672524