其他分享
首页 > 其他分享> > leetcode-1504. 统计全 1 子矩形

leetcode-1504. 统计全 1 子矩形

作者:互联网

本题用时58分钟。

题目链接

https://leetcode-cn.com/problems/count-submatrices-with-all-ones/

题目描述

给你一个只包含 0 和 1 的 rows * columns 矩阵 mat ,请你返回有多少个 子矩形 的元素全部都是 1 。

示例 1

输入:mat = [[1,0,1],
[1,1,0],
[1,1,0]]
输出:13
解释:
有 6 个 1x1 的矩形。
有 2 个 1x2 的矩形。
有 3 个 2x1 的矩形。
有 1 个 2x2 的矩形。
有 1 个 3x1 的矩形。
矩形数目总共 = 6 + 2 + 3 + 1 + 1 = 13 。

示例 2

输入:mat = [[0,1,1,0],
[0,1,1,1],
[1,1,1,0]]
输出:24
解释:
有 8 个 1x1 的子矩形。
有 5 个 1x2 的子矩形。
有 2 个 1x3 的子矩形。
有 4 个 2x1 的子矩形。
有 2 个 2x2 的子矩形。
有 2 个 3x1 的子矩形。
有 1 个 3x2 的子矩形。
矩形数目总共 = 8 + 5 + 2 + 4 + 2 + 2 + 1 = 24 。

示例 3

输入:mat = [[1,1,1,1,1,1]]
输出:21

示例 4

输入:mat = [[1,0,1],[0,1,0],[1,0,1]]
输出:5

提示

1 <= rows <= 150
1 <= columns <= 150
0 <= mat[i][j] <= 1

解题思路

矩阵里每个点(i.j)统计他这行左边到他这个位置最多有几个连续的1,存为left[i][j]。然后对于每个点(i.j),我们固定子矩形的右下角为(i.j),利用left从该行i向上寻找子矩阵左上角为第k行的矩阵个数。每次将子矩阵个数加到答案中即可。
时间复杂度O(nnm),空间复杂度O(nm)。

代码

class Solution {
public:
    int numSubmat(vector<vector<int>>& mat) {
        int n = mat.size();
        int m = mat[0].size();
        vector<vector<int> > left(n,vector<int>(m));
        int now = 0;
        for(int i=0;i<n;i++){
            now = 0;
            for(int j=0;j<m;j++){
                if(mat[i][j] == 1) now ++;
                else now = 0;
                left[i][j] = now;
            }
        }
        int ans = 0,minx;
        for(int i=0;i<n;i++){
            for(int j=0;j<m;j++){
                minx = 0x3f3f3f3f;
                for(int k=i;k>=0;k--){
                    minx = min(left[k][j],minx);
                    ans += minx;
                }
            }
        }
        return ans;
    }
};

标签:矩形,mat,int,minx,1504,now,leetcode,left
来源: https://blog.csdn.net/weixin_38554391/article/details/114992485